Suppr超能文献

新生儿脑电图背景评分中的评分者间和评分者内一致性

Interrater and Intrarater Agreement in Neonatal Electroencephalogram Background Scoring.

作者信息

Massey Shavonne L, Shou Haochang, Clancy Robert, DiGiovine Marissa, Fitzgerald Mark P, Fung France W, Farrar John, Abend Nicholas S

机构信息

Department of Pediatrics (Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A.

Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A.

出版信息

J Clin Neurophysiol. 2019 Jan;36(1):1-8. doi: 10.1097/WNP.0000000000000534.

Abstract

PURPOSE

Many neonates undergo electroencephalogram (EEG) monitoring to identify and manage acute symptomatic seizures. Information about brain function contained in the EEG background data may also help predict neurobehavioral outcomes. For EEG background features to be useful as prognostic indicators, the interpretation of these features must be standardized across electroencephalographers. We aimed at determining the interrater and intrarater agreement among electroencephalographers interpreting neonatal EEG background patterns.

METHODS

Five neonatal electroencephalographers reviewed 5-to-7.5-minute epochs of EEG from full-term neonates who underwent continuous conventional EEG monitoring. The EEG assessment tool used to classify background patterns was based on the American Clinical Neurophysiology Society's guideline for neonatal EEG terminology. Interrater and intrarater agreement were measured using Kappa coefficients.

RESULTS

Interrater agreement was consistently highest for voltage (binary: substantial, kappa = 0.783; categorical: moderate, kappa = 0.562), seizure presence (fair-substantial; kappa = 0.375-0.697), continuity (moderate; kappa = 0.481), burst voltage (moderate; kappa = 0.574), suppressed background presence (moderate-substantial; kappa = 0.493-0.643), delta activity presence (fair-moderate; kappa = 0.369-0.432), theta activity presence (fair-moderate; kappa = 0.347-0.600), presence of graphoelements (fair; kappa = 0.381), and overall impression (binary: moderate, kappa = 0.495; categorical: fair-moderate, kappa = 0.347, 0.465). Agreement was poor or inconsistent for all other patterns. Intrarater agreement was variable, with highest average agreement for voltage (binary: substantial, kappa = 0.75; categorical: substantial, kappa = 0.714) and highest consistent agreement for continuity (moderate-substantial; kappa = 0.43-0.67) and overall impression (moderate-substantial; kappa = 0.42-0.68).

CONCLUSIONS

This study demonstrates substantial variability in neonatal EEG background interpretation across electroencephalographers, indicating a need for educational and technological strategies aimed at improving performance.

摘要

目的

许多新生儿接受脑电图(EEG)监测以识别和处理急性症状性癫痫发作。EEG背景数据中包含的脑功能信息也可能有助于预测神经行为结果。要使EEG背景特征作为预后指标有用,这些特征的解读必须在脑电图检查人员之间实现标准化。我们旨在确定解读新生儿EEG背景模式的脑电图检查人员之间的评分者间一致性和评分者内一致性。

方法

五名新生儿脑电图检查人员回顾了接受连续常规EEG监测的足月儿5至7.5分钟的EEG片段。用于对背景模式进行分类的EEG评估工具基于美国临床神经生理学会的新生儿EEG术语指南。使用Kappa系数测量评分者间一致性和评分者内一致性。

结果

评分者间一致性在电压方面始终最高(二元:显著,kappa = 0.783;分类:中等,kappa = 0.562)、癫痫发作存在情况(一般至显著;kappa = 0.375 - 0.697)、连续性(中等;kappa = 0.481)、爆发电压(中等;kappa = 0.574)、背景抑制存在情况(中等至显著;kappa = 0.493 - 0.643)、δ活动存在情况(一般至中等;kappa = 0.369 - 0.432)、θ活动存在情况(一般至中等;kappa = 0.347 - 0.600)、图形元素存在情况(一般;kappa = 0.381)以及总体印象(二元:中等,kappa = 0.495;分类:一般至中等,kappa = 0.347, 0.465)。对于所有其他模式,一致性较差或不一致。评分者内一致性各不相同,电压方面平均一致性最高(二元:显著,kappa = 0.75;分类:显著,kappa = 0.714),连续性(中等至显著;kappa = 0.43 - 0.67)和总体印象(中等至显著;kappa = 0.42 - 0.68)的一致性最为稳定。

结论

本研究表明,脑电图检查人员对新生儿EEG背景的解读存在很大差异,这表明需要采取教育和技术策略来提高表现。

相似文献

1
Interrater and Intrarater Agreement in Neonatal Electroencephalogram Background Scoring.
J Clin Neurophysiol. 2019 Jan;36(1):1-8. doi: 10.1097/WNP.0000000000000534.
2
4
Interrater agreement in visual scoring of neonatal seizures based on majority voting on a web-based system: The Neoguard EEG database.
Clin Neurophysiol. 2017 Sep;128(9):1737-1745. doi: 10.1016/j.clinph.2017.06.250. Epub 2017 Jul 12.
5
Developing a Standardized Approach to Grading the Level of Brain Dysfunction on EEG.
J Clin Neurophysiol. 2023 Sep 1;40(6):553-561. doi: 10.1097/WNP.0000000000000919. Epub 2022 Feb 3.
6
Interobserver reproducibility of electroencephalogram interpretation in critically ill children.
J Clin Neurophysiol. 2011 Feb;28(1):15-9. doi: 10.1097/WNP.0b013e3182051123.
9
Interrater variability of EEG interpretation in comatose cardiac arrest patients.
Clin Neurophysiol. 2015 Dec;126(12):2397-404. doi: 10.1016/j.clinph.2015.03.017. Epub 2015 Apr 11.

引用本文的文献

1
Detection of neurologic changes in critically ill infants using deep learning on video data: a retrospective single center cohort study.
EClinicalMedicine. 2024 Nov 11;78:102919. doi: 10.1016/j.eclinm.2024.102919. eCollection 2024 Dec.
3
Unveiling variability: A systematic review of reproducibility in visual EEG analysis, with focus on seizures.
Epileptic Disord. 2024 Dec;26(6):827-839. doi: 10.1002/epd2.20291. Epub 2024 Sep 28.
4
Accurate prediction of neurologic changes in critically ill infants using pose AI.
medRxiv. 2024 Jun 10:2024.04.17.24305953. doi: 10.1101/2024.04.17.24305953.
6
[A preliminary study on a new method for evaluating brain maturation in preterm infants].
Zhongguo Dang Dai Er Ke Za Zhi. 2023 Aug 15;25(8):805-811. doi: 10.7499/j.issn.1008-8830.2303144.
7
[A novel method for electroencephalography background analysis in neonates with hypoxic-ischemic encephalopathy].
Zhongguo Dang Dai Er Ke Za Zhi. 2023 Feb 15;25(2):128-134. doi: 10.7499/j.issn.1008-8830.2208102.
8
Neuromonitoring in neonatal critical care part I: neonatal encephalopathy and neonates with possible seizures.
Pediatr Res. 2023 Jul;94(1):64-73. doi: 10.1038/s41390-022-02393-1. Epub 2022 Dec 7.
10
Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants.
Commun Med (Lond). 2022 Jun 15;2:69. doi: 10.1038/s43856-022-00131-6. eCollection 2022.

本文引用的文献

1
2
Early EEG Grade and Outcome at 5 Years After Mild Neonatal Hypoxic Ischemic Encephalopathy.
Pediatrics. 2016 Oct;138(4). doi: 10.1542/peds.2016-0659. Epub 2016 Sep 20.
3
Interobserver agreement for neonatal seizure detection using multichannel EEG.
Ann Clin Transl Neurol. 2015 Oct 1;2(11):1002-11. doi: 10.1002/acn3.249. eCollection 2015 Nov.
4
Generalized periodic discharges and 'triphasic waves': A blinded evaluation of inter-rater agreement and clinical significance.
Clin Neurophysiol. 2016 Feb;127(2):1073-1080. doi: 10.1016/j.clinph.2015.07.018. Epub 2015 Aug 7.
5
Improving the inter-rater agreement of hypsarrhythmia using a simplified EEG grading scale for children with infantile spasms.
Epilepsy Res. 2015 Oct;116:93-8. doi: 10.1016/j.eplepsyres.2015.07.008. Epub 2015 Jul 28.
6
EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review.
Clin Neurophysiol. 2016 Jan;127(1):285-296. doi: 10.1016/j.clinph.2015.05.018. Epub 2015 May 31.
7
Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis.
Front Hum Neurosci. 2015 Apr 23;9:189. doi: 10.3389/fnhum.2015.00189. eCollection 2015.
8
Automated analysis of multi-channel EEG in preterm infants.
Clin Neurophysiol. 2015 Sep;126(9):1692-702. doi: 10.1016/j.clinph.2014.11.024. Epub 2014 Dec 9.
9
Amplitude-integrated electroencephalography: a survey of practices in the United States.
Am J Perinatol. 2015 Jul;32(8):755-60. doi: 10.1055/s-0034-1395483. Epub 2014 Dec 17.
10
Inter-rater agreement on identification of electrographic seizures and periodic discharges in ICU EEG recordings.
Clin Neurophysiol. 2015 Sep;126(9):1661-9. doi: 10.1016/j.clinph.2014.11.008. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验