Suppr超能文献

智能可穿戴设备能够对婴儿发育中的运动能力进行实验室外跟踪。

Intelligent wearable allows out-of-the-lab tracking of developing motor abilities in infants.

作者信息

Airaksinen Manu, Gallen Anastasia, Kivi Anna, Vijayakrishnan Pavithra, Häyrinen Taru, Ilén Elina, Räsänen Okko, Haataja Leena M, Vanhatalo Sampsa

机构信息

BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Imaging, Helsinki University Hospital, Helsinki, Finland.

Department of Pediatric Neurology, Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

出版信息

Commun Med (Lond). 2022 Jun 15;2:69. doi: 10.1038/s43856-022-00131-6. eCollection 2022.

Abstract

BACKGROUND

Early neurodevelopmental care needs better, effective and objective solutions for assessing infants' motor abilities. Novel wearable technology opens possibilities for characterizing spontaneous movement behavior. This work seeks to construct and validate a generalizable, scalable, and effective method to measure infants' spontaneous motor abilities across all motor milestones from lying supine to fluent walking.

METHODS

A multi-sensor infant wearable was constructed, and 59 infants (age 5-19 months) were recorded during their spontaneous play. A novel gross motor description scheme was used for human visual classification of postures and movements at a second-level time resolution. A deep learning -based classifier was then trained to mimic human annotations, and aggregated recording-level outputs were used to provide posture- and movement-specific developmental trajectories, which enabled more holistic assessments of motor maturity.

RESULTS

Recordings were technically successful in all infants, and the algorithmic analysis showed human-equivalent-level accuracy in quantifying the observed postures and movements. The aggregated recordings were used to train an algorithm for predicting a novel neurodevelopmental measure, Baba Infant Motor Score (BIMS). This index estimates maturity of infants' motor abilities, and it correlates very strongly (Pearson's  = 0.89, p < 1e-20) to the chronological age of the infant.

CONCLUSIONS

The results show that out-of-hospital assessment of infants' motor ability is possible using a multi-sensor wearable. The algorithmic analysis provides metrics of motility that are transparent, objective, intuitively interpretable, and they link strongly to infants' age. Such a solution could be automated and scaled to a global extent, holding promise for functional benchmarking in individualized patient care or early intervention trials.

摘要

背景

早期神经发育护理需要更好、有效且客观的方法来评估婴儿的运动能力。新型可穿戴技术为表征自发运动行为带来了可能性。本研究旨在构建并验证一种通用、可扩展且有效的方法,以测量婴儿从仰卧到流畅行走的所有运动里程碑阶段的自发运动能力。

方法

构建了一种多传感器婴儿可穿戴设备,并在59名婴儿(年龄5 - 19个月)自发玩耍期间进行记录。采用一种新颖的大运动描述方案,以二级时间分辨率对姿势和动作进行人工视觉分类。然后训练一个基于深度学习的分类器来模仿人工标注,并使用汇总的记录级输出提供特定于姿势和动作的发育轨迹,从而能够对运动成熟度进行更全面的评估。

结果

所有婴儿的记录在技术上均获成功,算法分析在量化观察到的姿势和动作方面显示出与人类等效水平的准确性。汇总记录用于训练一种预测新型神经发育指标——巴巴婴儿运动评分(BIMS)的算法。该指标估计婴儿运动能力的成熟度,并且与婴儿的实际年龄具有非常强的相关性(皮尔逊相关系数 = 0.89,p < 1e - 20)。

结论

结果表明,使用多传感器可穿戴设备在院外评估婴儿运动能力是可行的。算法分析提供了透明、客观、直观可解释的运动指标,并且与婴儿年龄密切相关。这样的解决方案可以实现自动化并在全球范围内扩展,有望在个性化患者护理或早期干预试验中进行功能基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b0a/9200857/1ab213bb8a57/43856_2022_131_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验