Sarkar Camellia, Jalan Sarika
Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
Chaos. 2018 Oct;28(10):102101. doi: 10.1063/1.5040897.
This review presents an account of the major works done on spectra of adjacency matrices drawn on networks and the basic understanding attained so far. We have divided the review under three sections: (a) extremal eigenvalues, (b) bulk part of the spectrum, and (c) degenerate eigenvalues, based on the intrinsic properties of eigenvalues and the phenomena they capture. We have reviewed the works done for spectra of various popular model networks, such as the Erdős-Rényi random networks, scale-free networks, 1-d lattice, small-world networks, and various different real-world networks. Additionally, potential applications of spectral properties for natural processes have been reviewed.
本综述介绍了关于网络上邻接矩阵谱的主要研究工作以及目前所取得的基本认识。我们根据特征值的内在性质及其所反映的现象,将综述分为三个部分:(a) 极值特征值,(b) 谱的主体部分,以及 (c) 简并特征值。我们回顾了针对各种流行模型网络(如厄多斯 - 雷尼随机网络、无标度网络、一维晶格、小世界网络以及各种不同的现实世界网络)的谱所开展的研究工作。此外,还综述了谱性质在自然过程中的潜在应用。