Suppr超能文献

使用拉曼光谱和光相干断层扫描对烧伤进行分类:猪皮的离体研究。

Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.

机构信息

Utopia Compression Corporation, 11150 W Olympic Blvd, Los Angeles, CA 90064, USA.

Utopia Compression Corporation, 11150 W Olympic Blvd, Los Angeles, CA 90064, USA; Department of Computer Science, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA.

出版信息

Burns. 2019 May;45(3):659-670. doi: 10.1016/j.burns.2018.10.007. Epub 2018 Oct 29.

Abstract

Accurate depth assessment of burn wounds is a critical task to provide the right treatment and care. Currently, laser Doppler imaging is able to provide better accuracy compared to the standard clinical evaluation. However, its clinical applicability is limited by factors like scanning distance, time, and cost. Precise diagnosis of burns requires adequate structural and functional details. In this work, we evaluated the combined potential of two non-invasive optical modalities, optical coherence tomography (OCT) and Raman spectroscopy (RS), to identify degrees of burn wounds (superficial partial-thickness (SPT), deep partial-thickness (DPT), and full-thickness (FT)). OCT provides morphological information, whereas, RS provides biochemical aspects. OCT images and Raman spectra were obtained from burns created on ex-vivo porcine skin. Algorithms were developed to segment skin region and extract textural features from OCT images, and derive spectral wave features from RS. These computed features were fed into machine learning classifiers for categorization of burns. Histological results obtained from trichrome staining were used as ground-truth. The combined performance of RS-OCT reported an overall average accuracy of 85% and ROC-AUC=0.94, in distinguishing the burn wounds. The significant performance on ex vivo skin motivates to assess the feasibility of combined RS-OCT in in vivo models.

摘要

准确评估烧伤深度对于提供正确的治疗和护理至关重要。目前,激光多普勒成像(LDI)在提供更准确的评估方面优于标准临床评估。然而,其临床适用性受到扫描距离、时间和成本等因素的限制。精确诊断烧伤需要充分的结构和功能细节。在这项工作中,我们评估了两种非侵入性光学模式(光学相干断层扫描(OCT)和拉曼光谱(RS))的联合潜力,以识别烧伤程度(浅二度烧伤(SPT)、深二度烧伤(DPT)和三度烧伤(FT))。OCT 提供形态学信息,而 RS 提供生物化学方面的信息。从离体猪皮上创建的烧伤部位获取 OCT 图像和拉曼光谱。开发了算法来分割皮肤区域并从 OCT 图像中提取纹理特征,并从 RS 中推导出光谱波特征。将这些计算得到的特征输入到机器学习分类器中,以对烧伤进行分类。使用三色染色获得的组织学结果作为基准。RS-OCT 的综合性能报告了区分烧伤的总体平均准确率为 85%,ROC-AUC=0.94。在离体皮肤上的显著性能激发了在体内模型中评估 RS-OCT 联合使用的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验