Suppr超能文献

原发性体感皮层的异常感觉门控导致发作性运动诱发性运动障碍的运动回路功能障碍。

Aberrant Sensory Gating of the Primary Somatosensory Cortex Contributes to the Motor Circuit Dysfunction in Paroxysmal Kinesigenic Dyskinesia.

作者信息

Liu Yo-Tsen, Chen Yi-Chieh, Kwan Shang-Yeong, Chou Chien-Chen, Yu Hsiang-Yu, Yen Der-Jen, Liao Kwong-Kum, Chen Wei-Ta, Lin Yung-Yang, Chen Rou-Shayn, Jih Kang-Yang, Lu Shu-Fen, Wu Yu-Te, Wang Po-Shan, Hsiao Fu-Jung

机构信息

Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.

Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.

出版信息

Front Neurol. 2018 Oct 15;9:831. doi: 10.3389/fneur.2018.00831. eCollection 2018.

Abstract

Paroxysmal kinesigenic dyskinesia (PKD) is conventionally regarded as a movement disorder (MD) and characterized by episodic hyperkinesia by sudden movements. However, patients of PKD often have sensory aura and respond excellently to antiepileptic agents. mutations, the most common genetic etiology of PKD, could cause epilepsy syndromes as well. Standing in the twilight zone between MDs and epilepsy, the pathogenesis of PKD is unclear. Gamma oscillations arise from the inhibitory interneurons which are crucial in the thalamocortical circuits. The role of synchronized gamma oscillations in sensory gating is an important mechanism of automatic cortical inhibition. The patterns of gamma oscillations have been used to characterize neurophysiological features of many neurological diseases, including epilepsy and MDs. This study was aimed to investigate the features of gamma synchronizations in PKD. In the paired-pulse electrical-stimulation task, we recorded the magnetoencephalographic data with distributed source modeling and time-frequency analysis in 19 patients of newly-diagnosed PKD without receiving pharmacotherapy and 18 healthy controls. In combination with the magnetic resonance imaging, the source of gamma oscillations was localized in the primary somatosensory cortex. Somatosensory evoked fields of PKD patients had a reduced peak frequency ( < 0.001 for the first and the second response) and a prolonged peak latency (the first response = 0.02, the second response = 0.002), indicating the synchronization of gamma oscillation is significantly attenuated. The power ratio between two responses was much higher in the PKD group ( = 0.013), indicating the incompetence of activity suppression. Aberrant gamma synchronizations revealed the defective sensory gating of the somatosensory area contributes the pathogenesis of PKD. Our findings documented disinhibited cortical function is a pathomechanism common to PKD and epilepsy, thus rationalized the clinical overlaps of these two diseases and the therapeutic effect of antiepileptic agents for PKD. There is a greater reduction of the peak gamma frequency in -related PKD than the non- PKD group ( = 0.028 for the first response, = 0.004 for the second response). Loss-of-function mutations could lead to synaptic dysfunction. The disinhibiton change on neurophysiology reflected the impacts of mutations on human neurophysiology.

摘要

发作性运动诱发性运动障碍(PKD)传统上被视为一种运动障碍(MD),其特征是突然运动引发发作性运动亢进。然而,PKD患者常伴有感觉先兆,且对抗癫痫药物反应良好。PKD最常见的遗传病因——突变,也可导致癫痫综合征。PKD处于运动障碍和癫痫的模糊地带,其发病机制尚不清楚。γ振荡由丘脑皮质回路中起关键作用的抑制性中间神经元产生。同步γ振荡在感觉门控中的作用是自动皮质抑制的重要机制。γ振荡模式已被用于表征包括癫痫和运动障碍在内的多种神经系统疾病的神经生理特征。本研究旨在探究PKD中γ同步化的特征。在配对脉冲电刺激任务中,我们对19例未接受药物治疗的新诊断PKD患者和18名健康对照者进行了脑磁图数据记录,并采用分布式源建模和时频分析。结合磁共振成像,γ振荡源定位于初级体感皮层。PKD患者的体感诱发电场峰值频率降低(第一次和第二次反应均P<0.001),峰值潜伏期延长(第一次反应P = 0.02,第二次反应P = 0.002),表明γ振荡同步化明显减弱。PKD组两次反应之间的功率比更高(P = 0.013),表明活动抑制能力不足。异常的γ同步化揭示了体感区感觉门控缺陷促成了PKD的发病机制。我们的研究结果表明,皮质功能去抑制是PKD和癫痫共有的病理机制,从而解释了这两种疾病的临床重叠现象以及抗癫痫药物对PKD的治疗效果。与非相关PKD组相比,相关PKD组的γ峰值频率降低更明显(第一次反应P = 0.028,第二次反应P = 0.004)。功能丧失性突变可导致突触功能障碍。神经生理学上的去抑制变化反映了突变对人类神经生理学的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d843/6198142/b008cc959211/fneur-09-00831-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验