Suppr超能文献

影响研究和干预需求的发育毒性的时程。

Timescales of developmental toxicity impacting on research and needs for intervention.

机构信息

Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark.

Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3(Suppl 3):70-80. doi: 10.1111/bcpt.13162. Epub 2018 Dec 10.

Abstract

Much progress has happened in understanding developmental vulnerability to preventable environmental hazards. Along with the improved insight, the perspective has widened, and developmental toxicity now involves latent effects that can result in delayed adverse effects in adults or at old age and additional effects that can be transgenerationally transferred to future generations. Although epidemiology and toxicology to an increasing degree are exploring the adverse effects from developmental exposures in human beings, the improved documentation has resulted in little progress in protection, and few environmental chemicals are currently regulated to protect against developmental toxicity, whether it be neurotoxicity, endocrine disruption or other adverse outcome. The desire to obtain a high degree of certainty and verification of the evidence used for decision-making must be weighed against the costs and necessary duration of research, as well as the long-term costs to human health because of delayed protection of vulnerable early-life stages of human development and, possibly, future generations. Although two-generation toxicology tests may be useful for initial test purposes, other rapidly emerging tools need to be seriously considered from computational chemistry and metabolomics to CLARITY-BPA-type designs, big data and population record linkage approaches that will allow efficient generation of new insight; epigenetic mechanisms may necessitate a set of additional regulatory tests to reveal such effects. As reflected by the Prenatal Programming and Toxicity (PPTOX) VI conference, the current scientific understanding and the timescales involved require an intensified approach to protect against preventable adverse health effects that can harm the next generation and generations to come. While further research is needed, the main emphasis should be on research translation and timely public health intervention to avoid serious, irreversible and perhaps transgenerational harm.

摘要

在理解易受可预防环境危害影响的发育脆弱性方面已经取得了很大进展。随着认识的提高,视角也扩大了,发育毒性现在涉及潜在效应,这些效应可能导致成年人或老年时出现延迟的不良后果,以及可能传递给后代的额外效应。尽管流行病学和毒理学越来越多地探索人类发育暴露的不良影响,但改进的文献记录并没有在保护方面取得多少进展,目前几乎没有环境化学物质受到监管以防止发育毒性,无论是神经毒性、内分泌干扰还是其他不良后果。在权衡决策证据的确定性和验证程度与研究的成本和必要持续时间,以及由于延迟保护人类发育的早期脆弱阶段和可能的后代而对人类健康造成的长期成本时,必须权衡利弊。虽然两代毒理学测试可能对初始测试目的有用,但其他新兴工具,如计算化学和代谢组学,CLARITY-BPA 型设计、大数据和人群记录链接方法等,也需要认真考虑,这些方法将允许高效地产生新的见解;表观遗传机制可能需要一套额外的监管测试来揭示这些效应。正如产前编程和毒性 (PPTOX) VI 会议所反映的那样,当前的科学认识和所涉及的时间尺度需要采取强化措施来预防可预防的不良健康影响,这些影响可能会对下一代和后代造成伤害。虽然需要进一步研究,但主要重点应该是研究转化和及时的公共卫生干预,以避免严重、不可逆转的,甚至可能是跨代的伤害。

相似文献

1
Timescales of developmental toxicity impacting on research and needs for intervention.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3(Suppl 3):70-80. doi: 10.1111/bcpt.13162. Epub 2018 Dec 10.
2
CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3(Suppl 3):14-31. doi: 10.1111/bcpt.13125. Epub 2018 Oct 17.
3
The developmental basis of disease: Update on environmental exposures and animal models.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3:5-13. doi: 10.1111/bcpt.13118. Epub 2018 Sep 28.
4
Flaws in design, execution and interpretation limit CLARITY-BPA's value for risk assessments of bisphenol A.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3:32-43. doi: 10.1111/bcpt.13195. Epub 2019 Feb 15.
5
Epigenetic perspective on the developmental effects of bisphenol A.
Brain Behav Immun. 2011 Aug;25(6):1084-93. doi: 10.1016/j.bbi.2011.02.005. Epub 2011 Feb 17.
6
Development priority.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3(Suppl 3):3-4. doi: 10.1111/bcpt.13249. Epub 2019 Jun 28.
7
Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail.
Fertil Steril. 2016 Sep 15;106(4):871-9. doi: 10.1016/j.fertnstert.2016.07.1100. Epub 2016 Aug 11.
9
Epigenetic transgenerational actions of endocrine disruptors.
Reprod Toxicol. 2011 Apr;31(3):337-43. doi: 10.1016/j.reprotox.2010.10.012. Epub 2010 Nov 3.
10
Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb.
Rev Environ Health. 2019 Dec 18;34(4):309-325. doi: 10.1515/reveh-2018-0059.

引用本文的文献

1
Prenatal polycyclic aromatic hydrocarbons exposure and child growth and adiposity: A longitudinal study.
Environ Res. 2025 Mar 1;268:120756. doi: 10.1016/j.envres.2025.120756. Epub 2025 Jan 3.
2
Invited Perspective: Can Eating a Healthy Diet during Pregnancy Attenuate the Obesogenic Effects of Persistent Organic Pollutants?
Environ Health Perspect. 2023 Mar;131(3):31306. doi: 10.1289/EHP12193. Epub 2023 Mar 16.
3
Addressing systemic problems with exposure assessments to protect the public's health.
Environ Health. 2023 Jan 12;21(Suppl 1):121. doi: 10.1186/s12940-022-00917-0.
4
Pollution and health: a progress update.
Lancet Planet Health. 2022 Jun;6(6):e535-e547. doi: 10.1016/S2542-5196(22)00090-0. Epub 2022 May 18.
5
Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease.
Front Neurosci. 2021 Dec 2;15:752153. doi: 10.3389/fnins.2021.752153. eCollection 2021.
6
Microplastics, environment and child health.
Ital J Pediatr. 2021 Mar 25;47(1):75. doi: 10.1186/s13052-021-01034-3.
8
Exposure to Toenail Heavy Metals and Child Behavior Problems in Nine-Year-Old Children: A Cross-Sectional Study.
Int J Environ Res Public Health. 2020 Jun 9;17(11):4120. doi: 10.3390/ijerph17114120.
9
Down syndrome.
Nat Rev Dis Primers. 2020 Feb 6;6(1):9. doi: 10.1038/s41572-019-0143-7.

本文引用的文献

1
The developmental basis of disease: Update on environmental exposures and animal models.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3:5-13. doi: 10.1111/bcpt.13118. Epub 2018 Sep 28.
2
CLARITY-BPA academic laboratory studies identify consistent low-dose Bisphenol A effects on multiple organ systems.
Basic Clin Pharmacol Toxicol. 2019 Aug;125 Suppl 3(Suppl 3):14-31. doi: 10.1111/bcpt.13125. Epub 2018 Oct 17.
3
Accelerated functional losses in ageing congenital Minamata disease patients.
Neurotoxicol Teratol. 2018 Sep-Oct;69:49-53. doi: 10.1016/j.ntt.2018.08.001. Epub 2018 Aug 10.
4
Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week.
J Am Coll Cardiol. 2018 Aug 14;72(7):805-813. doi: 10.1016/j.jacc.2018.06.014.
6
Toward sustainable environmental quality: Priority research questions for Europe.
Environ Toxicol Chem. 2018 Sep;37(9):2281-2295. doi: 10.1002/etc.4205. Epub 2018 Jul 19.
7
Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders.
Mol Psychiatry. 2019 Jan;24(1):10-17. doi: 10.1038/s41380-018-0095-4. Epub 2018 Jun 11.
8
Renal Functional Reserve Revisited.
Adv Chronic Kidney Dis. 2018 May;25(3):e1-e8. doi: 10.1053/j.ackd.2018.03.001.
9
OBGYN screening for environmental exposures: A call for action.
PLoS One. 2018 May 16;13(5):e0195375. doi: 10.1371/journal.pone.0195375. eCollection 2018.
10
All science should inform policy and regulation.
PLoS Med. 2018 May 3;15(5):e1002576. doi: 10.1371/journal.pmed.1002576. eCollection 2018 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验