Liu Sijie, Su Ruisheng, Su Jiahang, van Zwam Wim H, van Doormaal Pieter Jan, van der Lugt Aad, Niessen Wiro J, van Walsum Theo
Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China.
Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Med Phys. 2025 Jul;52(7):e17855. doi: 10.1002/mp.17855. Epub 2025 Apr 28.
The accurate automated extraction of brain vessel centerlines from Computed tomographic angiography (CTA) images plays an important role in diagnosing and treating cerebrovascular diseases such as stroke. Despite its significance, this task is complicated by the complex cerebrovascular structure and heterogeneous imaging quality.
This study aims to develop and validate a segmentation-assisted framework designed to improve the accuracy and efficiency of brain vessel centerline extraction from CTA images. We streamline the process of lumen segmentation generation without additional annotation effort from physicians, enhancing the effectiveness of centerline extraction.
The framework integrates four modules: (1) pre-processing techniques that register CTA images with a CT atlas and divide these images into input patches, (2) lumen segmentation generation from annotated vessel centerlines using graph cuts and robust kernel regression, (3) a dual-branch topology-aware UNet (DTUNet) that optimizes the use of the annotated vessel centerlines and the generated lumen segmentation via a topology-aware loss (TAL) and its dual-branch structure, and (4) post-processing methods that skeletonize and refine the lumen segmentation predicted by the DTUNet.
An in-house dataset derived from a subset of the MR CLEAN Registry is used to evaluate the proposed framework. The dataset comprises 10 intracranial CTA images, and 40 cube CTA sub-images with a resolution of voxels. Via five-fold cross-validation on this dataset, we demonstrate that the proposed framework consistently outperforms state-of-the-art methods in terms of average symmetric centerline distance (ASCD) and overlap (OV). Specifically, it achieves an ASCD of 0.84, an of 0.839, and an of 0.885 for intracranial CTA images, and obtains an ASCD of 1.26, an of 0.779, and an of 0.824 for cube CTA sub-images. Subgroup analyses further suggest that the proposed framework holds promise in clinical applications for stroke diagnosis and treatment.
By automating the process of lumen segmentation generation and optimizing the network design of vessel centerline extraction, DTUnet achieves high performance without introducing additional annotation demands. This solution promises to be beneficial in various clinical applications in cerebrovascular disease management.
从计算机断层血管造影(CTA)图像中准确自动提取脑血管中心线在中风等脑血管疾病的诊断和治疗中起着重要作用。尽管其意义重大,但由于脑血管结构复杂且成像质量不均一,这项任务变得复杂。
本研究旨在开发并验证一个分割辅助框架,以提高从CTA图像中提取脑血管中心线的准确性和效率。我们简化了管腔分割生成过程,无需医生额外标注,从而提高中心线提取的有效性。
该框架集成了四个模块:(1)将CTA图像与CT图谱配准并将这些图像划分为输入块的预处理技术;(2)使用图割和鲁棒核回归从标注的血管中心线生成管腔分割;(3)一种双分支拓扑感知U-Net(DTUNet),通过拓扑感知损失(TAL)及其双分支结构优化标注血管中心线和生成的管腔分割的使用;(4)对DTUNet预测的管腔分割进行骨架化和细化的后处理方法。
使用从MR CLEAN注册中心的一个子集中获取的内部数据集来评估所提出的框架。该数据集包括10幅颅内CTA图像和40幅分辨率为体素的立方体CTA子图像。通过对该数据集进行五折交叉验证,我们证明所提出的框架在平均对称中心线距离(ASCD)和重叠率(OV)方面始终优于现有方法。具体而言,对于颅内CTA图像,其ASCD为0.84,OV为0.839,Dice系数为0.885;对于立方体CTA子图像,其ASCD为1.26,OV为0.779,Dice系数为0.824。亚组分析进一步表明,所提出的框架在中风诊断和治疗的临床应用中具有前景。
通过自动化管腔分割生成过程并优化血管中心线提取的网络设计,DTUnet在不引入额外标注需求的情况下实现了高性能。该解决方案有望在脑血管疾病管理的各种临床应用中发挥作用。