Suppr超能文献

一种由双酶和双纳米球构建的信号放大系统,用于灵敏检测去甲肾上腺素和 miRNA。

A signal amplification system constructed by bi-enzymes and bi-nanospheres for sensitive detection of norepinephrine and miRNA.

机构信息

College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.

College of Life Sciences, Qingdao University, Qingdao 266071, China.

出版信息

Biosens Bioelectron. 2019 Jan 15;124-125:224-232. doi: 10.1016/j.bios.2018.10.030. Epub 2018 Oct 17.

Abstract

Achieving the enhanced sensitivity and stability is always the pursuit for the fabrication of enzymatic biosensors. However, their sensitivity was still restricted by the fluctuant detection target (e.g. concentration), complex detection environment and limited recognition capability of enzymes. Herein, an effective and facile approach was designed to construct a bi-enzymatic and bi-nanospherical signal amplification system for fabrication of biosensors based on the designed polydopamine(PDA)-laccase@Au-glucose dehydrogenase. Therein, laccase-catalytic polymerized PDA nanoparticles (NPs) provided the supporting matrix for immobilization of laccase and AuNPs. The AuNPs with good conductivity and large surface area were used not only as a platform for enhanced loading capacity of glucose dehydrogenase but also as a conducting medium for electron transfer acceleration between enzymes and electrode. Moreover, the coordinated catalysis of bi-enzymes (laccase and glucose dehydrogenase) could avoid the fluctuated concentration of detection target (e.g. norepinephrine), while the application of bi-nanospheres loaded with large amount of enzymes could effectively amplify the signal of biosensors. Taking advantages of these merits, the as-prepared biosensors showed preeminent reproducibility, larger detection range from 0.5 nM to 0.5 μM, and lower detection limit of 0.07 nM (S/N = 3) for the norepinephrine detection. Besides, the constructed PDA-laccase@Au-glucose dehydrogenase was also successfully applied as the sensing probes for the detection of microRNA (miRNA), especially for single-nucleotide mismatched miRNA via specific recognition.

摘要

实现增强的灵敏度和稳定性一直是酶生物传感器制造的追求。然而,它们的灵敏度仍然受到波动的检测目标(例如浓度)、复杂的检测环境和酶有限的识别能力的限制。在此,设计了一种有效且简单的方法,用于构建基于设计的聚多巴胺(PDA)-漆酶@Au-葡萄糖脱氢酶的生物传感器的双酶和双纳米球信号放大系统。在此,漆酶催化聚合的 PDA 纳米颗粒(NPs)为漆酶和 AuNPs 的固定化提供了支撑基质。具有良好导电性和大表面积的 AuNPs 不仅可用作增强葡萄糖脱氢酶的负载能力的平台,而且可用作酶和电极之间电子转移加速的导电介质。此外,双酶(漆酶和葡萄糖脱氢酶)的协同催化可以避免检测目标(例如去甲肾上腺素)浓度的波动,而负载大量酶的双纳米球的应用可以有效地放大生物传感器的信号。利用这些优点,所制备的生物传感器表现出卓越的重现性、更大的检测范围(从 0.5 nM 到 0.5 μM)和更低的检测限(0.07 nM(S/N = 3)),用于去甲肾上腺素的检测。此外,构建的 PDA-漆酶@Au-葡萄糖脱氢酶还成功用作感测探针,用于检测 microRNA(miRNA),特别是通过特异性识别用于单核苷酸错配 miRNA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验