Department of Medical Sciences, University of Torino, Torino, Italy.
Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.
Neurobiol Dis. 2019 Apr;124:14-28. doi: 10.1016/j.nbd.2018.10.018. Epub 2018 Oct 30.
Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.
脊髓小脑共济失调 28 型是一种常染色体显性遗传性神经退行性疾病,由影响 AFG3L2 蛋白水解结构域的错义突变引起,AFG3L2 是线粒体 m-AAA 蛋白酶的主要组成部分。然而,对于潜在的发病机制或如何治疗 SCA28 患者,我们知之甚少。目前可用的 Afg3l2 突变小鼠携带缺失突变,导致严重的早发性神经表型,不能真实再现晚发性和进展缓慢的 SCA28 表型。在这里,我们描述了一种新的敲入鼠模型的产生和详细分析,该模型携带一个携带 p.Met665Arg 患者来源突变的 Afg3l2 等位基因。杂合突变小鼠正常发育,但成年小鼠表现出小脑共济失调的迹象,可通过横梁试验检测到。尽管小脑病理学为阴性,但电生理分析显示杂合突变体中的浦肯野细胞自发放电有增加的趋势,与野生型对照相比。由于纯合突变体在围产期死亡,并有心脏萎缩的证据,因此对于每种基因型,我们都生成了小鼠胚胎成纤维细胞(MEF)来研究线粒体功能。突变小鼠的 MEF 显示线粒体生物发生改变,基础耗氧量、ATP 合成和线粒体膜电位降低。线粒体网络形成和形态发生改变,融合 Opa1 同工型的表达大大降低。18 个月大的杂合突变体的小脑也检测到了线粒体改变,这可能是疾病的一个标志。用氯霉素抑制新的线粒体蛋白翻译可逆转纯合突变 MEF 中的线粒体形态,这支持了线粒体蛋白毒性对 SCA28 发病机制和治疗开发的相关性。