Suppr超能文献

与28型脊髓小脑共济失调相关的基因AFG3L2单倍剂量不足会导致线粒体介导的浦肯野细胞暗变性。

Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration.

作者信息

Maltecca Francesca, Magnoni Raffaella, Cerri Federica, Cox Gregory A, Quattrini Angelo, Casari Giorgio

机构信息

Center for Genomics, Bioinformatics, and Biostatistics, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.

出版信息

J Neurosci. 2009 Jul 22;29(29):9244-54. doi: 10.1523/JNEUROSCI.1532-09.2009.

Abstract

Paraplegin and AFG3L2 are ubiquitous nuclear-encoded mitochondrial proteins that form hetero-oligomeric paraplegin-AFG3L2 and homo-oligomeric AFG3L2 complexes in the inner mitochondrial membrane, named m-AAA proteases. These complexes ensure protein quality control in the inner membrane, jointly with a chaperone-like activity on the respiratory chain complexes. Despite coassembling in the same complex, mutations of either paraplegin or AFG3L2 cause two different neurodegenerative disorders. Indeed, mutations of paraplegin are responsible for a recessive form of hereditary spastic paraplegia, whereas mutations of AFG3L2 have been recently associated to a dominant form of spinocerebellar ataxia (SCA28). In this work, we report that the mouse model haploinsufficient for Afg3l2 recapitulates important pathophysiological features of the human disease, thus representing the first SCA28 model. Furthermore, we propose a pathogenetic mechanism in which respiratory chain dysfunction and increased reactive oxygen species production caused by Afg3l2 haploinsufficiency lead to dark degeneration of Purkinje cells and cerebellar dysfunction.

摘要

Paraplegin和AFG3L2是普遍存在的核编码线粒体蛋白,它们在线粒体内膜中形成异源寡聚体Paraplegin-AFG3L2和同源寡聚体AFG3L2复合物,称为m-AAA蛋白酶。这些复合物与呼吸链复合物上的伴侣样活性共同确保内膜中的蛋白质质量控制。尽管共同组装在同一复合物中,但Paraplegin或AFG3L2的突变会导致两种不同的神经退行性疾病。事实上,Paraplegin的突变是遗传性痉挛性截瘫隐性形式的病因,而AFG3L2的突变最近与显性形式的脊髓小脑共济失调(SCA28)相关。在这项工作中,我们报告了Afg3l2单倍体不足的小鼠模型概括了人类疾病的重要病理生理特征,因此代表了第一个SCA28模型。此外,我们提出了一种发病机制,其中Afg3l2单倍体不足导致的呼吸链功能障碍和活性氧产生增加会导致浦肯野细胞黑质变性和小脑功能障碍。

相似文献

2
m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.
Cell Res. 2018 Mar;28(3):296-306. doi: 10.1038/cr.2018.17. Epub 2018 Feb 16.
3
Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28.
Nat Genet. 2010 Apr;42(4):313-21. doi: 10.1038/ng.544. Epub 2010 Mar 7.
8
Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration.
Hum Mol Genet. 2009 Jun 1;18(11):2001-13. doi: 10.1093/hmg/ddp124. Epub 2009 Mar 16.
9
10
Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
Brain. 2024 Mar 1;147(3):1043-1056. doi: 10.1093/brain/awad340.

引用本文的文献

1
Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6.
Acta Neuropathol. 2024 Jan 29;147(1):26. doi: 10.1007/s00401-023-02680-z.
2
Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders.
Mol Neurobiol. 2024 Jul;61(7):3788-3808. doi: 10.1007/s12035-023-03768-z. Epub 2023 Nov 28.
3
Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
Brain. 2024 Mar 1;147(3):1043-1056. doi: 10.1093/brain/awad340.
7
AAA+ proteases: the first line of defense against mitochondrial damage.
PeerJ. 2022 Nov 7;10:e14350. doi: 10.7717/peerj.14350. eCollection 2022.
8
The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance.
Front Neurosci. 2021 Nov 15;15:784987. doi: 10.3389/fnins.2021.784987. eCollection 2021.
9
Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications.
Cerebellum. 2022 Jun;21(3):452-481. doi: 10.1007/s12311-021-01311-1. Epub 2021 Aug 10.

本文引用的文献

1
Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration.
Hum Mol Genet. 2009 Jun 1;18(11):2001-13. doi: 10.1093/hmg/ddp124. Epub 2009 Mar 16.
2
Mitochondria in neuroplasticity and neurological disorders.
Neuron. 2008 Dec 10;60(5):748-66. doi: 10.1016/j.neuron.2008.10.010.
3
How mitochondria produce reactive oxygen species.
Biochem J. 2009 Jan 1;417(1):1-13. doi: 10.1042/BJ20081386.
4
The mitochondrial protease AFG3L2 is essential for axonal development.
J Neurosci. 2008 Mar 12;28(11):2827-36. doi: 10.1523/JNEUROSCI.4677-07.2008.
5
Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis.
J Neurochem. 2008 May;105(3):763-72. doi: 10.1111/j.1471-4159.2007.05178.x. Epub 2007 Dec 10.
6
Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases.
Crit Rev Biochem Mol Biol. 2007 May-Jun;42(3):221-42. doi: 10.1080/10409230701380452.
7
Mitochondrial trafficking and morphology in healthy and injured neurons.
Prog Neurobiol. 2006 Dec;80(5):241-68. doi: 10.1016/j.pneurobio.2006.09.003. Epub 2006 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验