Suppr超能文献

基于预学习空间子空间和线性变换的单投影驱动实时多对比度(SPIDERM)MR 成像。

Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation.

机构信息

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America.

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States of America.

出版信息

Phys Med Biol. 2022 Jun 27;67(13). doi: 10.1088/1361-6560/ac783e.

Abstract

To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-fly with flexible contrast weightings and a low latency.In SPIDERM, a 'prep' scan is first performed, with sparse k-space sampling periodically interleaved with the central k-space line (navigator data), to learn a subject-specific model, incorporating a spatial subspace and a linear transformation between navigator data and subspace coordinates. A 'live' scan is then performed by repeatedly acquiring the central k-space line only to dynamically determine subspace coordinates. With the 'prep'-learned subspace and 'live' coordinates, real-time 3D images are generated on-the-fly with computationally efficient matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM further allows for data-driven image contrast regeneration to convert real-time contrast-varying images into contrast-frozen images at user's discretion while maintaining motion states. Both digital phantom andexperiments were performed to evaluate the technical feasibility of SPIDERM.The elapsed time from the input of the central k-space line to the generation of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms or less. Motion displacement measured from SPIDERM and reference images showed excellent correlation (R2≥0.983). Geometric variation from the ground truth in the digital phantom was acceptable as demonstrated by pancreas contour analysis (Dice ≥ 0.84, mean surface distance ≤ 0.95 mm). Quantitative image quality metrics showed good consistency between reference images and contrast-varying SPIDREM images instudies (meanNMRSE=0.141,PSNR=30.12,SSIM=0.88).SPIDERM is capable of generating real-time multi-contrast 3D images with a low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone package for MR-guided radiation therapy by offering adaptive simulation through a 'prep' scan and real-time image guidance through a 'live' scan.

摘要

开发并测试一种新颖的单项目离子驱动实时多对比度(SPIDERM)磁共振成像技术的可行性,该技术可以实时生成具有灵活对比度加权和低延迟的 3D 图像。在 SPIDERM 中,首先进行“预备”扫描,稀疏的 k 空间采样周期性地与中央 k 空间线(导航数据)交错,以学习特定于主体的模型,该模型包含空间子空间和导航数据与子空间坐标之间的线性变换。然后通过仅重复获取中央 k 空间线来执行“实时”扫描,以动态确定子空间坐标。使用“预备”学习的子空间和“实时”坐标,可以通过计算效率高的矩阵乘法实时生成 3D 图像。当基于多对比度脉冲序列实现时,SPIDERM 还允许根据数据驱动的图像对比度再生,将实时对比度变化的图像转换为用户自行决定的对比度冻结图像,同时保持运动状态。数字体模和实验都用于评估 SPIDERM 的技术可行性。从中央 k 空间线的输入到实时对比度冻结 3D 图像的生成的时间约为 45 毫秒,允许延迟时间为 55 毫秒或更短。从 SPIDERM 和参考图像测量的运动位移显示出极好的相关性(R2≥0.983)。在数字体模中,与真实情况的几何偏差是可以接受的,这体现在胰腺轮廓分析上(Dice≥0.84,平均表面距离≤0.95 毫米)。定量图像质量指标表明,参考图像和对比度变化的 SPIDREM 图像之间具有良好的一致性(meanNMRSE=0.141,PSNR=30.12,SSIM=0.88)。SPIDERM 能够生成具有低延迟的实时多对比度 3D 图像。基于 SPIDERM 的成像框架具有通过“预备”扫描提供自适应模拟以及通过“实时”扫描提供实时图像引导的潜力,可作为磁共振引导放射治疗的独立套件。

相似文献

引用本文的文献

4
Accelerating 4D image reconstruction for magnetic resonance-guided radiotherapy.加速磁共振引导放射治疗的4D图像重建
Phys Imaging Radiat Oncol. 2023 Aug 20;27:100484. doi: 10.1016/j.phro.2023.100484. eCollection 2023 Jul.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验