School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
School of Biological Sciences, Washington State University, Pullman, Washington, United States of America.
PLoS Genet. 2018 Nov 6;14(11):e1007735. doi: 10.1371/journal.pgen.1007735. eCollection 2018 Nov.
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
饮食可能会随着季节、生物地理、人口或文化的变化而改变。它可以不同程度地影响线粒体生物能量学、向核基因组的逆行信号以及向线粒体的顺行信号。所有这些相互作用都有可能改变自然中线粒体 DNA 单倍型(粒体)的频率,并可能影响人类健康。在一个模型实验室系统中,我们用四种不同蛋白:碳水化合物(P:C)比例(1:2、1:4、1:8 和 1:16 P:C)喂养四种同质的黑腹果蝇粒体(核基因组标准化),并在种群笼中检测它们的频率。当喂食高蛋白 1:2 P:C 饮食时,携带阿尔斯通维尔 mtDNA 的果蝇频率增加。相反,当喂食高碳水化合物 1:16 P:C 食物时,携带达荷美 mtDNA 的果蝇发病率增加。这一结果是由幼虫发育差异驱动的,可推广到用高、低 P:C 比的水果替代实验室饮食、核基因组扰动和微生物组变化。结构建模和细胞分析表明,达荷美 mtDNA 中复合体 I 的 ND4 亚基的 V161L 突变是轻度有害的,降低了线粒体功能,增加了氧化应激,导致幼虫在 1:2 P:C 饮食上的发育时间延长。1:16 P:C 饮食触发了两种粒体的级联变化。在达荷美幼虫中,增加的摄食促进了β-氧化和复合体 I 突变的部分旁路。相反,阿尔斯通维尔幼虫上调了与氧化磷酸化有关的基因,增加了糖原代谢,并且它们更活跃。我们假设,增加的身体活动将能量从生长和细胞分裂中转移出来,从而减缓了发育。这些数据进一步质疑将 mtDNA 用作进化和群体遗传学研究中假定的中性标记。此外,如果人类的反应类似,我们假设具有特定 mtDNA 变异的个体可能会以不同的方式代谢碳水化合物,这对包括心血管疾病、肥胖症在内的多种疾病有影响,也许帕金森病也是如此。