Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Signal. 2018 Nov 6;11(555):eaar3250. doi: 10.1126/scisignal.aar3250.
Phosphoregulation, in which the addition of a negatively charged phosphate group modulates protein activity, enables dynamic cellular responses. To understand how new phosphoregulation might be acquired, we mutationally scanned the surface of a prototypical yeast kinase (Kss1) to identify potential regulatory sites. The data revealed a set of spatially distributed "hotspots" that might have coevolved with the active site and preferentially modulated kinase activity. By engineering simple consensus phosphorylation sites at these hotspots, we rewired cell signaling in yeast. Using the same approach with a homolog yeast mitogen-activated protein kinase, Hog1, we introduced new phosphoregulation that modified its localization and signaling dynamics. Beyond revealing potential use in synthetic biology, our findings suggest that the identified hotspots contribute to the diversity of natural allosteric regulatory mechanisms in the eukaryotic kinome and, given that some are mutated in cancers, understanding these hotspots may have clinical relevance to human disease.
磷酸化调节,即在蛋白质活性中添加带负电荷的磷酸基团来调节其活性,使细胞能够做出动态响应。为了了解新的磷酸化调节是如何获得的,我们对一个典型的酵母激酶(Kss1)的表面进行突变扫描,以识别潜在的调节位点。这些数据揭示了一组空间分布的“热点”,这些热点可能与活性位点共同进化,并优先调节激酶活性。通过在这些热点处设计简单的共识磷酸化位点,我们对酵母中的细胞信号进行了重新布线。我们使用相同的方法对同源酵母丝裂原激活蛋白激酶 Hog1 进行研究,引入了新的磷酸化调节,改变了其定位和信号转导动力学。除了在合成生物学中有潜在的应用外,我们的研究结果还表明,所鉴定的热点有助于真核激酶组中天然变构调节机制的多样性,并且鉴于其中一些热点在癌症中发生突变,了解这些热点可能与人类疾病的临床相关。