Institute of Applied Physics , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8573 , Japan.
Electron Microscope Facility , TIA, AIST , 16-1 Onogawa , Tsukuba , Ibaraki 305-8569 , Japan.
ACS Appl Mater Interfaces. 2018 Dec 5;10(48):41664-41669. doi: 10.1021/acsami.8b14960. Epub 2018 Nov 19.
Metal-induced layer-exchange growth of amorphous carbon (a-C) is a unique technique for fabricating high-quality, uniform multilayer graphene (MLG) directly on an insulating material. Here, we investigated the effect of transition-metal species on the interaction between metals and a-C in the temperature range of 600-1000 °C. As a result, metals were classified into four groups: (1) layer exchange (Co, Ni, Cr, Mn, Fe, Ru, Ir, and Pt), (2) carbonization (Ti, Mo, and W), (3) local MLG formation (Pd), and (4) no graphitization (Cu, Ag, and Au). Some layer-exchange metals allowed for low-temperature MLG synthesis at 600 °C, whereas others allowed for high-quality MLG with a Raman G/D peak ratio of up to 8.3. Based on the periodic table, we constructed metal selection guidelines for growing MLG on an insulator, opening the door for applications that combine advanced electronic devices with carbon materials.
金属诱导的非晶碳(a-C)层交换生长是一种独特的技术,可直接在绝缘材料上制造高质量、均匀的多层石墨烯(MLG)。在这里,我们研究了过渡金属种类对 600-1000°C 温度范围内金属与 a-C 之间相互作用的影响。结果表明,金属分为四类:(1)层交换(Co、Ni、Cr、Mn、Fe、Ru、Ir 和 Pt),(2)碳化(Ti、Mo 和 W),(3)局部 MLG 形成(Pd),(4)无石墨化(Cu、Ag 和 Au)。一些层交换金属允许在 600°C 低温下合成 MLG,而另一些金属则允许形成高质量的 MLG,其拉曼 G/D 峰比高达 8.3。根据元素周期表,我们构建了在绝缘体上生长 MLG 的金属选择指南,为将先进电子设备与碳材料相结合的应用开辟了道路。