Thomas Bejoy, Raj Midhun C, B Athira K, H Rubiyah M, Joy Jithin, Moores Audrey, Drisko Glenna L, Sanchez Clément
Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.
International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India.
Chem Rev. 2018 Dec 26;118(24):11575-11625. doi: 10.1021/acs.chemrev.7b00627. Epub 2018 Nov 7.
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
由于石油基化学品和产品的使用引发了越来越多的环境和生态问题,利用自然资源合成精细化学品和功能材料具有重大的公共价值。纳米纤维素因其固有特性、可再生性和丰富性,可能成为当代最具前景的绿色材料之一。在本综述中,我们介绍了基于纳米纤维素的材料,内容涵盖纳米纤维素的来源、合成、表面改性,以及材料的形成和应用。纳米纤维素可从生物质、植物或细菌中获取,依靠相当简单、可扩展且高效的分离技术。机械处理、化学处理、酶处理或这些方法的组合,均可用于从天然来源提取纳米纤维素。纳米纤维素的性质取决于其来源、分离技术以及潜在的后续表面转变。纳米纤维素表面改性技术通常用于引入带电或疏水基团,包括酰胺化、酯化、醚化、硅烷化、聚合、聚氨酯化、磺化和磷酸化。纳米纤维素具有优异的强度、高杨氏模量、生物相容性以及可调节的自组装、触变性和光子特性,这些特性对于该材料的应用至关重要。纳米纤维素参与了多种纳米材料和纳米复合材料的制备,包括基于聚合物、金属、金属氧化物和碳的材料。特别是,纳米纤维素对有机基材料起到补充作用,赋予复合材料机械性能。每当需要材料强度、柔韧性和/或特定的纳米结构时,纳米纤维素都是一种很有前景的材料。其应用包括功能纸、光电子学、抗菌涂层、包装、机械增强聚合物复合材料、组织支架、药物递送、生物传感器、能量存储、催化、环境修复以及电化学控制分离。磷酸化纳米纤维素是一种特别有趣的材料,在骨支架、吸附剂、阻燃剂等多个不同领域有着令人惊讶的一系列应用,还可作为均相催化剂多相化的载体。