文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stimulus-responsive cellulose hydrogels in biomedical applications and challenges.

作者信息

Xue Huaqian, Zhu Cong, Wang Yifan, Gu Qiancheng, Shao Yunyuan, Jin Anqi, Zhang Xiaofen, Lei Lanjie, Li Yongliang

机构信息

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.

The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.

出版信息

Mater Today Bio. 2025 Apr 30;32:101814. doi: 10.1016/j.mtbio.2025.101814. eCollection 2025 Jun.


DOI:10.1016/j.mtbio.2025.101814
PMID:40416785
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12098173/
Abstract

Stimuli-responsive cellulose hydrogels have garnered significant attention in the biomedical field owing to their extensive applications in tissue engineering and controlled drug delivery systems. Derived from cellulose and its derivatives, they are synthesized through physical or chemical cross-linking techniques, offering notable advantages such as cost-effectiveness and excellent biocompatibility. These hydrogels can respond to environmental stimuli, including pH variations, temperature fluctuations, and light exposure, enabling targeted drug release and promoting tissue regeneration. In tissue engineering, Stimuli-responsive cellulose hydrogels are used for the repair and regeneration of skin, bone, and other critical tissues. In drug delivery, they are optimized for oral, nasal, and ocular administration, as well as advanced cancer therapies. In addition, Stimuli-responsive cellulose hydrogels exhibit significant potential in disease diagnostics, particularly their conductive variants, which show promise in biosensing and diagnostic applications. However, despite their potential, challenges such as immune compatibility, long-term stability, and scalability in production remain barriers to clinical translation. Future research efforts should focus on multifunctional integration, advanced intelligent design, and enhanced stimulus responsiveness to fully unlock their potential in biomedical applications and facilitate their transition from laboratory research to practical use.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/9cc7260338aa/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/efc84f65fadd/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/de784b656c5d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/303181b53496/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/fce40867abcc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/cb803defdad0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/99a15068459e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/3932f84afec7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/fa62fca0fab4/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/79d600c0e4e4/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/09364a2d873f/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/eb10cbf8fcd0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/22ca9920f829/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/d124bcca1a4a/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/9cc7260338aa/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/efc84f65fadd/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/de784b656c5d/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/303181b53496/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/fce40867abcc/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/cb803defdad0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/99a15068459e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/3932f84afec7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/fa62fca0fab4/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/79d600c0e4e4/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/09364a2d873f/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/eb10cbf8fcd0/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/22ca9920f829/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/d124bcca1a4a/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ae4/12098173/9cc7260338aa/gr13.jpg

相似文献

[1]
Stimulus-responsive cellulose hydrogels in biomedical applications and challenges.

Mater Today Bio. 2025-4-30

[2]
A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system.

Int J Biol Macromol. 2024-4

[3]
Synthesis and Characterization of Novel pH-Responsive Aminated Alginate Derivatives Hydrogels for Tissue Engineering and Drug Delivery.

Curr Org Synth. 2023-11-3

[4]
Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications.

Biomater Sci. 2023-12-19

[5]
DNA Hydrogels in Tissue Engineering: From Molecular Design to Next-Generation Biomedical Applications.

Adv Healthc Mater. 2025-5

[6]
4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2.

Expert Opin Drug Deliv. 2025-4

[7]
Multifunctional cellulose-based hydrogels for biomedical applications.

J Mater Chem B. 2018-11-2

[8]
Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture.

J Mater Chem B. 2022-1-5

[9]
A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials.

Gels. 2024-10-25

[10]
Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials.

Macromol Biosci. 2006-12-8

引用本文的文献

[1]
Cellulose-Based Hybrid Hydrogels for Tissue Engineering Applications: A Sustainable Approach.

Gels. 2025-6-6

本文引用的文献

[1]
Flexible capacitive pressure sensor with high sensitivity and wide detection range applying solvent-exchanged porous lignin-cellulose hydrogel as the dielectric layer.

Int J Biol Macromol. 2025-4

[2]
Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz. 2025-4-14

[3]
Multi-gradient energy-saving smart windows with thermo-response and multimodal thermal energy storage.

Mater Horiz. 2025-3-4

[4]
Sulfated Cellulose Nanofiber Hydrogel with Mucus-Like Activities for Virus Inhibition.

ACS Appl Mater Interfaces. 2024-12-11

[5]
Multi-Stimuli Responsive Viologen-Imprinted Polyvinyl Alcohol and Tricarboxy Cellulose Nanocomposite Hydrogels.

Sensors (Basel). 2024-10-25

[6]
Silver Nanoparticle-Decorated Cellulose Nanocrystal Reinforced Ionic Polymer Hydrogel With High Conductivity and Environmental Tolerance for Multifunctional Sensing and Emergency Alarm System.

Small. 2025-4

[7]
Tuneable Recombinant Spider Silk Protein Hydrogels for Drug Release and 3D Cell Culture.

Adv Funct Mater. 2024-8-28

[8]
Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring.

ACS Nano. 2024-10-8

[9]
Conductive, injectable, and self-healing collagen-hyaluronic acid hydrogels loaded with bacterial cellulose and gold nanoparticles for heart tissue engineering.

Int J Biol Macromol. 2024-11

[10]
All-Cellulose-based flexible Zinc-Ion battery enabled by waste pomelo peel.

J Colloid Interface Sci. 2025-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索