Suppr超能文献

学习塑造虚拟患者运动模式:内部表示适应利用交互动力学。

Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics.

机构信息

Neuromotor Systems Laboratory, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University , Boston, Massachusetts.

Department of Bioengineering, Northeastern University , Boston, Massachusetts.

出版信息

J Neurophysiol. 2019 Jan 1;121(1):321-335. doi: 10.1152/jn.00408.2018. Epub 2018 Nov 7.

Abstract

This work aimed to understand the sensorimotor processes used by humans when learning how to manipulate a virtual model of locomotor dynamics. Prior research shows that when interacting with novel dynamics humans develop internal models that map neural commands to limb motion and vice versa. Whether this can be extrapolated to locomotor rehabilitation, a continuous and rhythmic activity that involves dynamically complex interactions, is unknown. In this case, humans could default to model-free strategies. These competing hypotheses were tested with a novel interactive locomotor simulator that reproduced the dynamics of hemiparetic gait. A group of 16 healthy subjects practiced using a small robotic manipulandum to alter the gait of a virtual patient (VP) that had an asymmetric locomotor pattern modeled after stroke survivors. The point of interaction was the ankle of the VP's affected leg, and the goal was to make the VP's gait symmetric. Internal model formation was probed with unexpected force channels and null force fields. Generalization was assessed by changing the target locomotor pattern and comparing outcomes with a second group of 10 naive subjects who did not practice the initial symmetric target pattern. Results supported the internal model hypothesis with aftereffects and generalization of manipulation skill. Internal models demonstrated refinements that capitalized on the natural pendular dynamics of human locomotion. This work shows that despite the complex interactive dynamics involved in shaping locomotor patterns, humans nevertheless develop and use internal models that are refined with experience. NEW & NOTEWORTHY This study aimed to understand how humans manipulate the physics of locomotion, a common task for physical therapists during locomotor rehabilitation. To achieve this aim, a novel locomotor simulator was developed that allowed participants to feel like they were manipulating the leg of a miniature virtual stroke survivor walking on a treadmill. As participants practiced improving the simulated patient's gait, they developed generalizable internal models that capitalized on the natural pendular dynamics of locomotion.

摘要

这项工作旨在了解人类在学习如何操纵运动动力学虚拟模型时所使用的感觉运动过程。先前的研究表明,当与新的动力学相互作用时,人类会开发出将神经命令映射到肢体运动的内部模型,反之亦然。这是否可以推广到运动康复,一种连续和有节奏的活动,涉及动态复杂的相互作用,尚不清楚。在这种情况下,人类可能会默认采用无模型策略。这些相互竞争的假设通过一种新的交互式运动模拟器进行了测试,该模拟器再现了偏瘫步态的动力学。一组 16 名健康受试者使用小型机器人操纵器练习改变虚拟患者(VP)的步态,该患者的步态模式具有模仿中风幸存者的不对称性。交互点是 VP 受影响腿的脚踝,目标是使 VP 的步态对称。通过意外的力通道和零力场探测内部模型的形成。通过改变目标运动模式并将结果与第二组 10 名未练习初始对称目标模式的新手受试者进行比较,评估了泛化能力。结果支持内部模型假说,具有后效和操作技能的泛化。内部模型表现出的改进利用了人类运动的自然摆动动力学。这项工作表明,尽管涉及塑造运动模式的复杂交互动力学,但人类仍然会开发和使用经过经验改进的内部模型。 新的和值得注意的是,这项研究旨在了解人类如何操纵运动物理学,这是物理治疗师在运动康复期间的常见任务。为了实现这一目标,开发了一种新型的运动模拟器,允许参与者感觉自己在操纵微型虚拟中风幸存者在跑步机上行走的腿。随着参与者练习改善模拟患者的步态,他们开发了可推广的内部模型,这些模型利用了运动的自然摆动动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/661e/6383669/191154630bda/z9k0011948930001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验