Suppr超能文献

评估选择不同形变配准算法对锥形束 CT 增强直方图匹配的影响。

Assessing the impact of choosing different deformable registration algorithms on cone-beam CT enhancement by histogram matching.

机构信息

Department of Physics, Ferhat Abbas Setif University, El Bez Compus, 19000, Setif, Algeria.

出版信息

Radiat Oncol. 2018 Nov 7;13(1):217. doi: 10.1186/s13014-018-1162-3.

Abstract

BACKGROUND

The aim of this work is to assess the impact of using different deformable registration (DR) algorithms on the quality of cone-beam CT (CBCT) correction with histogram matching (HM).

METHODS AND MATERIALS

Data sets containing planning CT (pCT) and CBCT images for ten patients with prostate cancer were used. Each pCT image was registered to its corresponding CBCT image using one rigid registration algorithm with mutual information similarity metric (RR-MI) and three DR algorithms with normalized correlation coefficient, mutual information and normalized mutual information (DR-NCC, DR-MI and DR-NMI, respectively). Then, the HM was performed between deformed pCT and CBCT in order to correct the distribution of the Hounsfield Units (HU) in CBCT images.

RESULTS

The visual assessment showed that the absolute difference between corrected CBCT and deformed pCT was reduced after correction with HM except for soft tissue-air and soft-tissue-bone interfaces due to the improper registration. Furthermore, volumes comparison in terms of average HU error showed that using DR-NCC algorithm with HM yielded the lowest error values of about 55.95 ± 10.43 HU compared to DR-MI and DR-NMI for which the errors were 58.60 ± 10.35 and 56.58 ± 10.51 HU, respectively. Tissue class's comparison by the mean absolute error (MAE) plots confirmed the performance of DR-NCC algorithm to produce corrected CBCT images with lowest values of MAE even in regions where the misalignment is more pronounced. It was also found that the used method had successfully improved the spatial uniformity in the CBCT images by reducing the root mean squared difference (RMSD) between the pCT and CBCT in fat and muscle from 57 and 25 HU to 8HU, respectively.

CONCLUSION

The choice of an accurate DR algorithm before performing the HM leads to an accurate correction of CBCT images. The results suggest that applying DR process based on NCC similarity metric reduces significantly the uncertainties in CBCT images and generates images in good agreement with pCT.

摘要

背景

本研究旨在评估使用不同形变配准(DR)算法对基于直方图匹配(HM)的锥形束 CT(CBCT)校正质量的影响。

方法和材料

使用包含前列腺癌患者 10 例的计划 CT(pCT)和 CBCT 图像数据集。使用互信息相似性度量(RR-MI)的刚性配准算法和归一化相关系数、互信息和归一化互信息的 3 种 DR 算法(DR-NCC、DR-MI 和 DR-NMI)分别将每个 pCT 图像配准到其对应的 CBCT 图像。然后,在变形的 pCT 和 CBCT 之间进行 HM,以校正 CBCT 图像的体素 HU 分布。

结果

视觉评估表明,除了软组织-空气和软组织-骨骼界面,由于配准不当,在使用 HM 进行校正后,校正后的 CBCT 和变形的 pCT 之间的绝对差值减小。此外,从平均 HU 误差来看,使用 DR-NCC 算法与 HM 结合得到的误差值最低,约为 55.95±10.43 HU,而 DR-MI 和 DR-NMI 的误差值分别为 58.60±10.35 和 56.58±10.51 HU。通过平均绝对误差(MAE)图进行的组织分类比较,证实了 DR-NCC 算法的性能,即使在配准错误更明显的区域,它也能生成 MAE 值最低的校正后的 CBCT 图像。还发现,该方法通过将 pCT 和 CBCT 之间的脂肪和肌肉中的均方根差(RMSD)从 57 和 25 HU 分别降低到 8 HU,成功地提高了 CBCT 图像的空间均匀性。

结论

在进行 HM 之前选择准确的 DR 算法可以实现 CBCT 图像的精确校正。结果表明,应用基于 NCC 相似性度量的 DR 过程可以显著降低 CBCT 图像中的不确定性,并生成与 pCT 吻合良好的图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f017/6223042/ffb0178d59de/13014_2018_1162_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验