Suppr超能文献

采用高能氧化和有机溶剂溶解法从硬木桉树中高效分离制备纤维素纳米晶体(CNC)。

High energy oxidation and organosolv solubilization for high yield isolation of cellulose nanocrystals (CNC) from Eucalyptus hardwood.

机构信息

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

Sci Rep. 2018 Nov 7;8(1):16505. doi: 10.1038/s41598-018-34667-2.

Abstract

Cellulose nanocrystals (CNC) have been widely used as responsive materials, chiral templates, and tough nano-composites due to its unparalleled properties. Acid and enzyme hydrolyses are extensively employed to prepare CNC. These traditional approaches exhibit inherent limitations of corrosion hazards, time-consuming process, and/or low yield. Herein, irradiation oxidation and organosolv solubilization are conducted to cause rapid degradation with simultaneous crystallization of cellulose to achieve approx. 87% yield of CNC. The morphology, spectroscopic, and stability properties of the as-prepared CNC are characterized through UV-vis spectroscopy, zetal potential, XRD, TEM, DLS, GPC, FT-IR and TGA techniques. The resultant CNC suspension presents unique property with high stability after 9 months storage at 4 °C. Moreover, CNC liquid crystal phase is successfully generated by addition of anions or cations solution to the CNC aqueous dispersion without stirring. The innovative approach in this work opens an avenue to obtain CNC directly from lignocellulosic biomass through irradiation oxidation and organosolv solubilization without acid hydrolysis and washing procedure.

摘要

纤维素纳米晶体(CNC)因其独特的性质而被广泛用作响应材料、手性模板和坚韧的纳米复合材料。酸水解和酶水解被广泛用于制备 CNC。这些传统方法存在腐蚀性危害、耗时过程和/或低产率等固有局限性。在此,通过辐照氧化和有机溶剂溶解来实现纤维素的快速降解和同时结晶,以获得约 87%的 CNC 产率。通过紫外可见光谱、Zeta 电位、XRD、TEM、DLS、GPC、FT-IR 和 TGA 技术对所制备的 CNC 的形貌、光谱和稳定性特性进行了表征。所得 CNC 悬浮液在 4°C 下储存 9 个月后仍具有独特的高稳定性。此外,无需搅拌即可将 CNC 水溶液添加阴离子或阳离子溶液,成功生成 CNC 液晶相。这项工作中的创新方法开辟了一条途径,可通过辐照氧化和有机溶剂溶解,无需酸水解和洗涤工序,直接从木质纤维素生物质中获得 CNC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cc4/6220251/5140302f65d7/41598_2018_34667_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验