Suppr超能文献

齐普夫频率变化对成人人工语言学习中类别形成的影响。

The effect of Zipfian frequency variations on category formation in adult artificial language learning.

作者信息

Schuler Kathryn D, Reeder Patricia A, Newport Elissa L, Aslin Richard N

机构信息

Center for Brain Plasticity and Recovery, Department of Neurology, Georgetown University, Washington DC 20057.

Department of Psychological Science, Gustavus Adolphus College, Saint Peter, MN 56082.

出版信息

Lang Learn Dev. 2017;13(4):357-374. doi: 10.1080/15475441.2016.1263571. Epub 2017 Aug 2.

Abstract

Successful language acquisition hinges on organizing individual words into grammatical categories and learning the relationships between them, but the method by which children accomplish this task has been debated in the literature. One proposal is that learners use the shared distributional contexts in which words appear as a cue to their underlying category structure. Indeed, recent research using artificial languages has demonstrated that learners can acquire grammatical categories from this type of distributional information. However, artificial languages are typically composed of a small number of equally frequent words, while words in natural languages vary widely in frequency, complicating the distributional information needed to determine categorization. In a series of three experiments we demonstrate that distributional learning is preserved in an artificial language composed of words that vary in frequency as they do in natural language, along a Zipfian distribution. Rather than depending on the absolute frequency of words and their contexts, the conditional probabilities that words will occur in certain contexts (given their base frequency) is a better basis for assigning words to categories; and this appears to be the type of statistic that human learners utilize.

摘要

成功的语言习得取决于将单个单词组织成语法类别并学习它们之间的关系,但儿童完成这项任务的方法在文献中一直存在争议。一种观点认为,学习者利用单词出现的共享分布语境作为其潜在类别结构的线索。事实上,最近使用人工语言的研究表明,学习者可以从这种类型的分布信息中获取语法类别。然而,人工语言通常由少量出现频率相同的单词组成,而自然语言中的单词频率差异很大,这使得确定分类所需的分布信息变得复杂。在一系列三个实验中,我们证明了分布学习在一种由频率如自然语言中那样变化的单词组成的人工语言中得以保留,遵循齐普夫分布。将单词分配到类别更好的依据不是取决于单词及其语境的绝对频率,而是单词在特定语境中出现的条件概率(给定其基本频率);这似乎就是人类学习者所利用的那种统计数据。

相似文献

1
The effect of Zipfian frequency variations on category formation in adult artificial language learning.
Lang Learn Dev. 2017;13(4):357-374. doi: 10.1080/15475441.2016.1263571. Epub 2017 Aug 2.
2
From shared contexts to syntactic categories: the role of distributional information in learning linguistic form-classes.
Cogn Psychol. 2013 Feb;66(1):30-54. doi: 10.1016/j.cogpsych.2012.09.001. Epub 2012 Oct 23.
3
Word categorization from distributional information: frames confer more than the sum of their (Bigram) parts.
Cogn Psychol. 2014 Dec;75:1-27. doi: 10.1016/j.cogpsych.2014.07.003. Epub 2014 Aug 27.
4
Distributional learning of subcategories in an artificial grammar: Category generalization and subcategory restrictions.
J Mem Lang. 2017 Dec;97:17-29. doi: 10.1016/j.jml.2017.07.006. Epub 2017 Jul 20.
5
A universal cue for grammatical categories in the input to children: Frequent frames.
Cognition. 2018 Jun;175:131-140. doi: 10.1016/j.cognition.2018.02.005. Epub 2018 Mar 16.
6
Language learners privilege structured meaning over surface frequency.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5842-7. doi: 10.1073/pnas.1320525111. Epub 2014 Mar 31.
7
Category induction from distributional cues in an artificial language.
Mem Cognit. 2002 Jul;30(5):678-86. doi: 10.3758/bf03196424.
9
Zipfian frequency distributions facilitate word segmentation in context.
Cognition. 2013 Jun;127(3):439-53. doi: 10.1016/j.cognition.2013.02.002. Epub 2013 Apr 2.
10
The learnability consequences of Zipfian distributions in language.
Cognition. 2022 Jun;223:105038. doi: 10.1016/j.cognition.2022.105038. Epub 2022 Feb 2.

引用本文的文献

1
Individual differences in distributional statistical learning: Better frequency "discriminators" are better "estimators".
Q J Exp Psychol (Hove). 2024 Nov 14;78(9):17470218241293235. doi: 10.1177/17470218241293235.
3
Cultural evolution creates the statistical structure of language.
Sci Rep. 2024 Mar 4;14(1):5255. doi: 10.1038/s41598-024-56152-9.
4
Zipfian Distributions in Child-Directed Speech.
Open Mind (Camb). 2023 Jan 24;7:1-30. doi: 10.1162/opmi_a_00070. eCollection 2023.
7
Children and Adults as Language Learners: Rules, Variation, and Maturational Change.
Top Cogn Sci. 2020 Jan;12(1):153-169. doi: 10.1111/tops.12416. Epub 2019 Mar 5.
8
Distributional learning of subcategories in an artificial grammar: Category generalization and subcategory restrictions.
J Mem Lang. 2017 Dec;97:17-29. doi: 10.1016/j.jml.2017.07.006. Epub 2017 Jul 20.
9
Statistical language learning: computational, maturational, and linguistic constraints.
Lang Cogn. 2016 Sep;8(3):447-461. doi: 10.1017/langcog.2016.20. Epub 2016 Jul 28.

本文引用的文献

1
Rapid Expectation Adaptation during Syntactic Comprehension.
PLoS One. 2013 Oct 30;8(10):e77661. doi: 10.1371/journal.pone.0077661. eCollection 2013.
2
Zipfian frequency distributions facilitate word segmentation in context.
Cognition. 2013 Jun;127(3):439-53. doi: 10.1016/j.cognition.2013.02.002. Epub 2013 Apr 2.
3
From shared contexts to syntactic categories: the role of distributional information in learning linguistic form-classes.
Cogn Psychol. 2013 Feb;66(1):30-54. doi: 10.1016/j.cogpsych.2012.09.001. Epub 2012 Oct 23.
4
Language learners restructure their input to facilitate efficient communication.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17897-902. doi: 10.1073/pnas.1215776109. Epub 2012 Oct 15.
5
Lexically independent priming in online sentence comprehension.
Psychon Bull Rev. 2008 Feb;15(1):149-55. doi: 10.3758/pbr.15.1.149.
6
Does frequency count? Parental input and the acquisition of vocabulary.
J Child Lang. 2008 Aug;35(3):515-31. doi: 10.1017/S0305000907008641.
7
Give and take: syntactic priming during spoken language comprehension.
Cognition. 2008 Jul;108(1):51-68. doi: 10.1016/j.cognition.2007.12.012. Epub 2008 Feb 6.
9
Infants can use distributional cues to form syntactic categories.
J Child Lang. 2005 May;32(2):249-68. doi: 10.1017/s0305000904006786.
10
The differential role of phonological and distributional cues in grammatical categorisation.
Cognition. 2005 Jun;96(2):143-82. doi: 10.1016/j.cognition.2004.09.001. Epub 2004 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验