Suppr超能文献

用于安全直流刺激器的微型弹性阀设计

Miniature Elastomeric Valve Design for Safe Direct Current Stimulator.

作者信息

Cheng Chaojun, Thakur Raviraj, Nair Ankitha Rajagopalan, Sterrett Scott, Fridman Gene

机构信息

Mechanical Engineering, Johns Hopkins University, Baltimore, USA.

Otolaryngology HNS, Johns Hopkins University, Baltimore, USA.

出版信息

IEEE Biomed Circuits Syst Conf. 2017 Oct;2017:1-4. doi: 10.1109/BIOCAS.2017.8325194. Epub 2018 Mar 29.

Abstract

For safety reasons, commercial neural implants use charge-balanced biphasic pulses to interact with target neurons using metal electrodes. Short biphasic pulses are used to avoid irreversible electrochemical reactions at the electrode-tissue interfaces. Biphasic pulses are effective at exciting neurons, but quite limited in inhibiting their activity. In contrast, direct current can both excite and inhibit neurons, however delivered to metal electrodes, it causes toxic electrochemical reactions. We recently introduced Safe Direct Current Stimulator (SDCS) technology, which can excite or inhibit neurons without violating the safety criteria. Instead of direct current, SDCS generates an ionic direct current (iDC) from a biphasic input signal using a network of fluidic channels and mechanical valves. A key enabler towards transforming SDCS concept from a benchtop design to an implantable neural prosthesis is the design of a miniature valve. In this work, we present poly-dimethylsiloxane (PDMS) based elastomeric valves, squeeze valve (SV) and plunger valve (PV) capable of being actuated using a shape memory alloy wire.

摘要

出于安全考虑,商用神经植入物使用电荷平衡双相脉冲,通过金属电极与目标神经元相互作用。短双相脉冲用于避免电极 - 组织界面处的不可逆电化学反应。双相脉冲在激发神经元方面有效,但在抑制其活动方面相当有限。相比之下,直流电既能激发也能抑制神经元,然而,当输送到金属电极时,会引发有毒的电化学反应。我们最近推出了安全直流刺激器(SDCS)技术,它可以在不违反安全标准的情况下激发或抑制神经元。SDCS不是使用直流电,而是利用流体通道和机械阀网络从双相输入信号生成离子直流电(iDC)。将SDCS概念从台式设计转变为可植入神经假体的一个关键因素是微型阀的设计。在这项工作中,我们展示了基于聚二甲基硅氧烷(PDMS)的弹性体阀,即挤压阀(SV)和柱塞阀(PV),它们能够使用形状记忆合金丝进行驱动。

相似文献

1
Miniature Elastomeric Valve Design for Safe Direct Current Stimulator.
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017:1-4. doi: 10.1109/BIOCAS.2017.8325194. Epub 2018 Mar 29.
2
A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3544-3548. doi: 10.1109/EMBC44109.2020.9176474.
3
Safe direct current stimulator 2: concept and design.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3126-9. doi: 10.1109/EMBC.2013.6610203.
4
Electronics for a Safe Direct Current Stimulator.
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/BIOCAS.2017.8325191. Epub 2018 Mar 29.
5
Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy.
Front Neurosci. 2019 Apr 18;13:379. doi: 10.3389/fnins.2019.00379. eCollection 2019.
6
Safe direct current stimulation to expand capabilities of neural prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):319-28. doi: 10.1109/TNSRE.2013.2245423.
7
Safe Direct Current Stimulator design for reduced power consumption and increased reliability.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1082-1085. doi: 10.1109/EMBC.2017.8037015.
9
16-Channel biphasic current-mode programmable charge balanced neural stimulation.
Biomed Eng Online. 2017 Aug 14;16(1):104. doi: 10.1186/s12938-017-0385-0.
10
A Multi-Channel Asynchronous Neurostimulator With Artifact Suppression for Neural Code-Based Stimulations.
Front Neurosci. 2019 Sep 27;13:1011. doi: 10.3389/fnins.2019.01011. eCollection 2019.

引用本文的文献

1
On-chip ionic current sensor.
Appl Phys A Mater Sci Process. 2021 May;127(5). doi: 10.1007/s00339-021-04469-x. Epub 2021 Apr 7.
2
Direct current effects on afferent and hair cell to elicit natural firing patterns.
iScience. 2021 Feb 20;24(3):102205. doi: 10.1016/j.isci.2021.102205. eCollection 2021 Mar 19.
3
A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3544-3548. doi: 10.1109/EMBC44109.2020.9176474.
4
Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy.
Front Neurosci. 2019 Apr 18;13:379. doi: 10.3389/fnins.2019.00379. eCollection 2019.

本文引用的文献

1
Safe direct current stimulator 2: concept and design.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3126-9. doi: 10.1109/EMBC.2013.6610203.
2
Safe direct current stimulation to expand capabilities of neural prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):319-28. doi: 10.1109/TNSRE.2013.2245423.
3
Bionic vision: system architectures: a review.
Expert Rev Med Devices. 2012 Jan;9(1):33-48. doi: 10.1586/erd.11.58.
4
Frequency- and amplitude-transitioned waveforms mitigate the onset response in high-frequency nerve block.
J Neural Eng. 2010 Dec;7(6):066003. doi: 10.1088/1741-2560/7/6/066003. Epub 2010 Oct 22.
5
Electronic control of elastomeric microfluidic circuits with shape memory actuators.
Lab Chip. 2008 Sep;8(9):1530-5. doi: 10.1039/b804515a. Epub 2008 Jul 9.
6
Cochlear implants: a remarkable past and a brilliant future.
Hear Res. 2008 Aug;242(1-2):3-21. doi: 10.1016/j.heares.2008.06.005. Epub 2008 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验