Suppr超能文献

用于降低功耗和提高可靠性的安全直流刺激器设计。

Safe Direct Current Stimulator design for reduced power consumption and increased reliability.

作者信息

Fridman Gene

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1082-1085. doi: 10.1109/EMBC.2017.8037015.

Abstract

Current state of the art neural prosthetics, such as cochlear implants, spinal cord stimulators, and deep brain stimulators use implantable pulse generators (IPGs) to excite neural activity. Inhibition of neural firing is typically indirect and requires excitation of neurons that then have inhibitory projections downstream. Safe Direct Current Stimulator (SDCS) technology is designed to convert electronic pulses delivered to electrodes embedded within an implantable device to ionic direct current (iDC) at the output of the device. iDC from the device can then control neural extracellular potential with the intent of being able to not only excite, but also inhibit and sensitize neurons, thereby greatly expanding the possible applications of neuromodulation therapies and neural interface mechanisms. While the potential applications and proof of concept of this device have been the focus of previous work, the published descriptions of this technology leave significant room for power and reliability optimization. We describe and model a novel device construction designed to reduce power consumption by a factor of 12 and to improve its reliability by a factor of 8.

摘要

当前最先进的神经假体,如人工耳蜗、脊髓刺激器和深部脑刺激器,使用植入式脉冲发生器(IPG)来激发神经活动。抑制神经放电通常是间接的,需要激发神经元,然后这些神经元在下游具有抑制性投射。安全直流刺激器(SDCS)技术旨在将传递到植入式设备内电极的电脉冲转换为设备输出端的离子直流电(iDC)。然后,来自该设备的iDC可以控制神经细胞外电位,目的是不仅能够激发神经元,还能抑制和敏化神经元,从而极大地扩展了神经调节疗法和神经接口机制的可能应用。虽然该设备的潜在应用和概念验证一直是先前工作的重点,但已发表的关于该技术的描述在功率和可靠性优化方面仍有很大空间。我们描述并建模了一种新型设备结构,旨在将功耗降低12倍,并将其可靠性提高8倍。

相似文献

1
Safe Direct Current Stimulator design for reduced power consumption and increased reliability.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1082-1085. doi: 10.1109/EMBC.2017.8037015.
2
Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy.
Front Neurosci. 2019 Apr 18;13:379. doi: 10.3389/fnins.2019.00379. eCollection 2019.
3
Safe direct current stimulator 2: concept and design.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3126-9. doi: 10.1109/EMBC.2013.6610203.
4
Miniature Elastomeric Valve Design for Safe Direct Current Stimulator.
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017:1-4. doi: 10.1109/BIOCAS.2017.8325194. Epub 2018 Mar 29.
5
Electronics for a Safe Direct Current Stimulator.
IEEE Biomed Circuits Syst Conf. 2017 Oct;2017. doi: 10.1109/BIOCAS.2017.8325191. Epub 2018 Mar 29.
6
A wirelessly programmable chip for multi-channel neural stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6595-9. doi: 10.1109/EMBC.2012.6347506.
8
Safe direct current stimulation to expand capabilities of neural prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):319-28. doi: 10.1109/TNSRE.2013.2245423.
9
16-Channel biphasic current-mode programmable charge balanced neural stimulation.
Biomed Eng Online. 2017 Aug 14;16(1):104. doi: 10.1186/s12938-017-0385-0.
10
A Power-Efficient Multichannel Neural Stimulator Using High-Frequency Pulsed Excitation From an Unfiltered Dynamic Supply.
IEEE Trans Biomed Circuits Syst. 2016 Feb;10(1):61-71. doi: 10.1109/TBCAS.2014.2363736. Epub 2014 Nov 24.

引用本文的文献

1
Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing.
Adv Sci (Weinh). 2024 Mar;11(11):e2307369. doi: 10.1002/advs.202307369. Epub 2024 Jan 9.
2
Vestibular prosthesis: from basic research to clinics.
Front Integr Neurosci. 2023 May 16;17:1161860. doi: 10.3389/fnint.2023.1161860. eCollection 2023.
3
On-chip ionic current sensor.
Appl Phys A Mater Sci Process. 2021 May;127(5). doi: 10.1007/s00339-021-04469-x. Epub 2021 Apr 7.
4
Direct current effects on afferent and hair cell to elicit natural firing patterns.
iScience. 2021 Feb 20;24(3):102205. doi: 10.1016/j.isci.2021.102205. eCollection 2021 Mar 19.
5
A microfluidic system integrated with shape memory alloy valves for a safe direct current delivery system.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3544-3548. doi: 10.1109/EMBC44109.2020.9176474.
6
Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy.
Front Neurosci. 2019 Apr 18;13:379. doi: 10.3389/fnins.2019.00379. eCollection 2019.
8
Ionic Direct Current Modulation for Combined Inhibition/Excitation of the Vestibular System.
IEEE Trans Biomed Eng. 2019 Mar;66(3):775-783. doi: 10.1109/TBME.2018.2856698. Epub 2018 Jul 16.

本文引用的文献

1
Safe direct current stimulator 2: concept and design.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3126-9. doi: 10.1109/EMBC.2013.6610203.
2
Safe direct current stimulation to expand capabilities of neural prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):319-28. doi: 10.1109/TNSRE.2013.2245423.
3
Bionic vision: system architectures: a review.
Expert Rev Med Devices. 2012 Jan;9(1):33-48. doi: 10.1586/erd.11.58.
4
Cochlear implants: a remarkable past and a brilliant future.
Hear Res. 2008 Aug;242(1-2):3-21. doi: 10.1016/j.heares.2008.06.005. Epub 2008 Jun 22.
5
High frequency mammalian nerve conduction block: simulations and experiments.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4971-4. doi: 10.1109/IEMBS.2006.259254.
6
Electrical stimulation of excitable tissue: design of efficacious and safe protocols.
J Neurosci Methods. 2005 Feb 15;141(2):171-98. doi: 10.1016/j.jneumeth.2004.10.020.
7
Direct current electrical conduction block of peripheral nerve.
IEEE Trans Neural Syst Rehabil Eng. 2004 Sep;12(3):313-24. doi: 10.1109/TNSRE.2004.834205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验