处理人体运动捕捉中的磁干扰:技术综述
Dealing with Magnetic Disturbances in Human Motion Capture: A Survey of Techniques.
作者信息
Ligorio Gabriele, Sabatini Angelo Maria
机构信息
The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56125, Italy.
出版信息
Micromachines (Basel). 2016 Mar 9;7(3):43. doi: 10.3390/mi7030043.
Magnetic-Inertial Measurement Units (MIMUs) based on microelectromechanical (MEMS) technologies are widespread in contexts such as human motion tracking. Although they present several advantages (lightweight, size, cost), their orientation estimation accuracy might be poor. Indoor magnetic disturbances represent one of the limiting factors for their accuracy, and, therefore, a variety of work was done to characterize and compensate them. In this paper, the main compensation strategies included within Kalman-based orientation estimators are surveyed and classified according to which degrees of freedom are affected by the magnetic data and to the magnetic disturbance rejection methods implemented. By selecting a representative method from each category, four algorithms were obtained and compared in two different magnetic environments: (1) small workspace with an active magnetic source; (2) large workspace without active magnetic sources. A wrist-worn MIMU was used to acquire data from a healthy subject, whereas a stereophotogrammetric system was adopted to obtain ground-truth data. The results suggested that the model-based approaches represent the best compromise between the two testbeds. This is particularly true when the magnetic data are prevented to affect the estimation of the angles with respect to the vertical direction.
基于微机电系统(MEMS)技术的磁惯性测量单元(MIMU)在人体运动跟踪等领域广泛应用。尽管它们具有诸多优点(重量轻、尺寸小、成本低),但其方向估计精度可能较差。室内磁干扰是影响其精度的限制因素之一,因此,人们开展了各种工作来表征和补偿这些干扰。本文对基于卡尔曼滤波的方向估计器中包含的主要补偿策略进行了调研,并根据磁数据影响的自由度以及所采用的磁干扰抑制方法进行了分类。从每个类别中选取一种具有代表性的方法,得到了四种算法,并在两种不同的磁环境中进行了比较:(1)带有有源磁源的小工作空间;(2)没有有源磁源的大工作空间。使用佩戴在手腕上的MIMU从一名健康受试者获取数据,同时采用立体摄影测量系统获取地面真值数据。结果表明,基于模型的方法在两个测试平台之间表现出了最佳的折衷。当磁数据被阻止影响相对于垂直方向的角度估计时,情况尤其如此。
相似文献
Micromachines (Basel). 2016-3-9
IEEE Trans Neural Syst Rehabil Eng. 2021
Sensors (Basel). 2018-10-16
IEEE Trans Neural Syst Rehabil Eng. 2017-10-6
引用本文的文献
Open Res Eur. 2025-1-22
Proc Hum Factors Ergon Soc Annu Meet. 2017
Micromachines (Basel). 2020-8-25
Front Bioeng Biotechnol. 2020-2-5
Sensors (Basel). 2019-12-13
本文引用的文献
IEEE Trans Biomed Eng. 2015-8
IEEE Trans Instrum Meas. 2012-1-8
Sensors (Basel). 2011-1-26