Department of Physics and Astronomy, LSU, Baton Rouge, LA, 70803, USA.
Department of Radiology, UMass Medical School (UMMS), Worcester, MA, 01655, USA.
Med Phys. 2019 Jan;46(1):116-126. doi: 10.1002/mp.13277. Epub 2018 Nov 29.
Single-photon emission computed tomography (SPECT) is a noninvasive imaging modality, used in myocardial perfusion imaging. The challenges facing the majority of clinical SPECT systems are low sensitivity, poor resolution, and the relatively high radiation dose to the patient. New generation systems (GE Discovery, DSPECT) dedicated to cardiac imaging improve sensitivity by a factor of 5-8. This improvement can be used to decrease acquisition time and/or dose. However, in the case of ultra-low dose (~3 mCi) injections, acquisition times are still significantly long, taking 10-12 min. The purpose of this work is to investigate a new gamma camera design with 21 hemi-ellipsoid detectors each with a pinhole collimator for cardiac SPECT for further improvement in sensitivity and resolution and reduced patient exposures and imaging times.
To evaluate the resolution of our hemi-ellipsoid system, GATE Monte-Carlo simulations were performed on point-sources, rod-sources, and NCAT phantoms. For average full-width-half-maximum (FWHM) equivalence with base flat-detector, the pinhole-diameter for the curved hemi-ellipsoid detector was found to be 8.68 mm, an operating pinhole-diameter nominally expected to be ~3 times more sensitive than state-of-the-art systems. Rod-sources equally spaced within the region of interest were acquired with a 21-detector system and reconstructed with our multi-pinhole (MPH) iterative OSEM algorithm with collimator resolution recovery. The results were compared with the results of a state-of-the-art system (GE Discovery) available in the literature. The system was also evaluated using the mathematical anthropomorphic NCAT (NURBS-based Cardiac Torso; Segars et al. IEEE Trans Nucl Sci. 1999;46:503-506) phantom with a full (clinical)-dose acquisition (25 mCi) for 2 min and an ultra-low dose acquisition of 3 mCi for 5.44 min. The estimated left ventricle (LV) counts were compared with the available literature on a state-of-the-art system (DSPECT). FWHM of the LV wall on MPH-OSEM-reconstructed images with collimator resolution recovery was estimated.
On acquired rod-sources, the average resolution (FWHM) after reconstruction with resolution recovery in the entire region of interest (ROI) for cardiac imaging was on the average 4.44 mm (±2.84), compared to 6.9 mm (±1 mm) reported for GE Discovery (Kennedy et al., J Nucl Cardiol. 2014:21:443-452). For NCAT studies, improved sensitivity allowed a full-dose (25 mCi) 2-min acquisition (Ell8.68mmFD) which yielded 3.79 M LV counts. This is ~3.35 times higher compared to 1.13 M LV counts acquired in 2 min for clinical full dose for state-of-the-art DSPECT. The increased sensitivity also allowed an ultra-low dose acquisition protocol (Ell8.68 mmULD), 3 mCi (eight times less injected dose) in 5.44 min. This ultra-low dose protocol yielded ~1.23 M LV counts which was comparable to the full-dose 2-min acquisition for DSPECT. The estimated NCAT average FWHM at the LV wall after 12 iterations of the OSEM reconstruction was 4.95 and 5.66 mm around the mid-short-axis slices for Ell8.68mmFD and Ell8.68mmULD, respectively.
Our Monte-Carlo simulation studies and reconstruction suggest using (inverted wineglass sized) hemi-ellipsoid detectors with pinhole collimators can increase the sensitivity ~3.35 times over the new generation of dedicated cardiac SPECT systems, while also improving the reconstructed resolution for rod-sources with an average of 4.44 mm in region of interest. The extra sensitivity may be used for ultra-low dose imaging (3 mCi) at ~5.44 min for comparable clinical counts as state-of-the-art systems.
单光子发射计算机断层扫描(SPECT)是一种非侵入性成像方式,用于心肌灌注成像。大多数临床 SPECT 系统面临的挑战是灵敏度低、分辨率差以及患者接受的辐射剂量相对较高。专门用于心脏成像的新一代系统(GE Discovery、DSPECT)通过将灵敏度提高 5-8 倍来提高灵敏度。这种改进可以用于缩短采集时间和/或剂量。然而,在超低剂量(约 3 mCi)注射的情况下,采集时间仍然很长,需要 10-12 分钟。本工作旨在研究一种新的伽马相机设计,该设计具有 21 个半椭圆体探测器,每个探测器都带有针孔准直器,用于心脏 SPECT,以进一步提高灵敏度和分辨率,并降低患者的暴露和成像时间。
为了评估我们的半椭圆体系统的分辨率,我们对点源、棒源和 NCAT 体模进行了 GATE 蒙特卡罗模拟。为了使平均全宽半最大值(FWHM)等效于基础平板探测器,我们发现弯曲半椭圆体探测器的针孔直径为 8.68mm,名义上的工作针孔直径预计比最先进的系统灵敏 3 倍。用 21 个探测器系统采集感兴趣区域内等距的棒源,并使用我们的多针孔(MPH)迭代 OSEM 算法进行重建,具有准直器分辨率恢复。将结果与文献中可用的最先进系统(GE Discovery)的结果进行比较。还使用基于 NURBS 的心脏躯干的数学拟人 NCAT(NCAT)体模(Segars 等人,IEEE Trans Nucl Sci. 1999;46:503-506)进行了评估,使用全剂量(25 mCi)采集 2 分钟和超低剂量(3 mCi)采集 5.44 分钟。将估计的左心室(LV)计数与最先进系统(DSPECT)的可用文献进行了比较。使用具有准直器分辨率恢复的 MPH-OSEM 重建图像估计 LV 壁的 FWHM。
在采集的棒源上,心脏成像整个感兴趣区域(ROI)的重建后平均分辨率(FWHM)为 4.44mm(±2.84),而 GE Discovery 报告的为 6.9mm(±1mm)(Kennedy 等人,J Nucl Cardiol. 2014:21:443-452)。对于 NCAT 研究,提高的灵敏度允许进行全剂量(25 mCi)2 分钟采集(Ell8.68mmFD),产生 3.79M LV 计数。这比最先进的 DSPECT 用于 2 分钟临床全剂量采集的 1.13M LV 计数高约 3.35 倍。增加的灵敏度还允许进行超低剂量采集方案(Ell8.68mmULD),使用 3 mCi(注射剂量减少 8 倍),采集时间为 5.44 分钟。这种超低剂量方案产生的约 1.23M LV 计数与 DSPECT 的全剂量 2 分钟采集相当。OSEM 重建 12 次迭代后的 NCAT 平均 FWHM 在 LV 壁周围为 4.95 和 5.66mm,分别为 Ell8.68mmFD 和 Ell8.68mmULD 的中短轴切片。
我们的蒙特卡罗模拟研究和重建表明,使用(倒置酒杯大小)带针孔准直器的半椭圆体探测器可以将灵敏度提高约 3.35 倍,超过新一代专用心脏 SPECT 系统,同时还提高了棒源的重建分辨率,ROI 平均为 4.44mm。额外的灵敏度可用于超低剂量成像(3 mCi),在大约 5.44 分钟内获得与最先进系统相当的临床计数。