Suppr超能文献

PallorMetrics:一种自动量化眼底照片中视盘苍白度的软件,及其与视盘周围 RNFL 厚度的相关性。

PallorMetrics: Software for Automatically Quantifying Optic Disc Pallor in Fundus Photographs, and Associations With Peripapillary RNFL Thickness.

机构信息

Centre for Clinical Brain Sciences, Edinburgh, UK.

Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, University of Edinburgh, UK, Edinburgh, UK.

出版信息

Transl Vis Sci Technol. 2024 May 1;13(5):20. doi: 10.1167/tvst.13.5.20.

Abstract

PURPOSE

We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness.

METHODS

We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution.

RESULTS

We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (β = -9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone (β = -29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (β = 0.88; SE = 0.34; P < 0.05), and in the whole disc (β = -8.22; SE = 2.92; P < 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution.

CONCLUSIONS

We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness.

TRANSLATIONAL RELEVANCE

We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.

摘要

目的

我们旨在开发一种自动量化眼底照片中视盘苍白的方法,并确定其与视盘周围视网膜神经纤维层(pRNFL)厚度的关系。

方法

我们使用深度学习来分割眼底照片中的视盘、黄斑和血管,并测量苍白程度。我们评估了 118 名参与者的眼底照片中 pRNFL 厚度与苍白程度之间的关系。另外,我们使用临床检查诊断为苍白的图像(n=45),并评估了这些测量值与健康对照组(n=46)相比的情况。我们还开发了自动拒绝阈值,并测试了软件对相机类型、图像格式和分辨率的稳健性。

结果

我们开发了一种软件,可以自动量化眼底照片中多个区域的视盘苍白程度。苍白程度与 pRNFL 厚度在全局(β=-9.81,标准误[SE]=3.16,P<0.05)、颞下区(β=-29.78,SE=8.32,P<0.01)、鼻/颞比值(β=0.88,SE=0.34,P<0.05)和整个视盘(β=-8.22,SE=2.92,P<0.05)均存在相关性。此外,患者组的苍白程度明显更高。最后,我们证明该分析对相机类型、图像格式和分辨率具有稳健性。

结论

我们开发了一种软件,可以自动定位和量化眼底照片中的视盘苍白程度,并发现苍白程度测量值与 pRNFL 厚度之间存在相关性。

翻译

王新宇

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abc4/11127490/149b86e7b435/tvst-13-5-20-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验