Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
Stem Cell Res Ther. 2018 Nov 8;9(1):298. doi: 10.1186/s13287-018-1012-0.
Recent studies have demonstrated mesenchymal stem cells (MSCs) as effective mitochondrial donors with therapeutic success in multiple experimental models of human disease. MSCs obtained from different tissue sources such as bone marrow (BM), adipose (AD), dental pulp (DP), and Wharton's jelly (WJ) are routinely used in clinical trials with no known study of their mitochondrial donor capacity. Here, we show for the first time that MSCs derived from different tissue sources have different mitochondrial donor properties and that this is correlated with their intrinsic respiratory states.
MitoTracker-labeled MSCs were co-cultured with Cell Trace-labeled U87-MG cells or rat cardiomyocytes. Mitochondrial transfer abilities of MSCs were assessed by using flow cytometry analysis and fluorescence imaging. Mitochondrial reactive oxygen species (mtROS) levels were analyzed by using MitoSOX red-based staining, and mitochondrial respiration parameters were analyzed by using a Seahorse XF Analyzer.
AD-MSCs and BM-MSCs displayed higher mitochondrial transfer than DP-MSCs and WJ-MSCs. Counterintuitively, DP-MSCs and WJ-MSCs were more effective in suppressing mtROS levels in stressed recipient cells than AD-MSCs or BM-MSCs. Interestingly, the oxygen consumption rates and intrinsic mitochondrial respiration parameters like ATP levels, basal and maximal respiration, and mitochondrial DNA copy number in donor MSCs showed a highly significant inverse correlation with their mitochondrial donation.
We find that there are intrinsic differences in the mitochondrial respiration, donation capacity, and therapeutic efficacy among MSCs of different tissue origin. MSCs with high mitochondrial respiration capacities are associated with lower mitochondrial transfer but more effective suppression of mtROS in stressed recipient cells. This is most compatible with a model where recipient cells optimally regulate mitochondrial transfer such that they take more mitochondria from MSCs with lower mitochondrial function. Furthermore, it appears to be advantageous to use MSCs such as DP-MSCs or WJ-MSCs with higher mitochondrial respiratory abilities that achieved better therapeutic effect with lower mitochondrial transfer in our study. This opens up a new direction in stem cell therapeutics.
最近的研究表明,间充质干细胞(MSCs)作为有效的线粒体供体,在多种人类疾病的实验模型中具有治疗成功。从不同组织来源(如骨髓[BM]、脂肪[AD]、牙髓[DP]和沃顿胶[WJ])获得的 MSCs 常规用于临床试验,但其线粒体供体能力尚无已知研究。在这里,我们首次表明,来自不同组织来源的 MSCs 具有不同的线粒体供体特性,并且这与其内在呼吸状态相关。
用 MitoTracker 标记 MSCs 与 CellTrace 标记的 U87-MG 细胞或大鼠心肌细胞共培养。通过流式细胞术分析和荧光成像评估 MSCs 的线粒体转移能力。使用 MitoSOX red 染色分析线粒体活性氧(mtROS)水平,使用 Seahorse XF 分析仪分析线粒体呼吸参数。
AD-MSCs 和 BM-MSCs 的线粒体转移能力高于 DP-MSCs 和 WJ-MSCs。与 AD-MSCs 或 BM-MSCs 相比,DP-MSCs 和 WJ-MSCs 更有效地降低应激受体细胞中的 mtROS 水平。有趣的是,供体 MSC 的耗氧率和内在线粒体呼吸参数(如 ATP 水平、基础和最大呼吸以及线粒体 DNA 拷贝数)与它们的线粒体供体呈高度显著的负相关。
我们发现,不同组织来源的 MSCs 之间在线粒体呼吸、供体能力和治疗效果方面存在内在差异。具有高线粒体呼吸能力的 MSCs 与较低的线粒体转移相关,但在应激受体细胞中更有效地抑制 mtROS。这最符合这样一种模型,即受体细胞最佳地调节线粒体转移,从而从线粒体功能较低的 MSC 中获取更多的线粒体。此外,在我们的研究中,使用具有较高线粒体呼吸能力的 MSC,如 DP-MSCs 或 WJ-MSCs,似乎具有优势,因为它们以较低的线粒体转移实现了更好的治疗效果。这为干细胞治疗开辟了新的方向。