Rose Erica Billig, Lee Kwonsang, Roy Jason A, Small Dylan, Ross Michelle E, Castillo-Neyra Ricardo, Levy Michael Z
University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, USA.
University of Pennsylvania, Wharton School, Department of Statistics, Philadelphia, USA.
Spat Spatiotemporal Epidemiol. 2018 Nov;27:47-59. doi: 10.1016/j.sste.2018.08.003. Epub 2018 Aug 29.
Vector-borne diseases commonly emerge in urban landscapes, and Gaussian field models can be used to create risk maps of vector presence across a large environment. However, these models do not account for the possibility that streets function as permeable barriers for insect vectors. We describe a methodology to transform spatial point data to incorporate permeable barriers, by distorting the map to widen streets, with one additional parameter. We use Gaussian field models to estimate this additional parameter, and develop risk maps incorporating streets as permeable barriers. We demonstrate our method on simulated datasets and apply it to data on Triatoma infestans, a vector of Chagas disease in Arequipa, Peru. We found that the transformed landscape that best fit the observed pattern of Triatoma infestans infestation, approximately doubled the true Euclidean distance between neighboring houses on different city blocks. Our findings may better guide control of re-emergent insect populations.
媒介传播疾病通常在城市环境中出现,高斯场模型可用于创建大型环境中病媒存在的风险地图。然而,这些模型没有考虑到街道对昆虫病媒起到渗透屏障作用的可能性。我们描述了一种方法,通过用一个额外参数扭曲地图来拓宽街道,从而将空间点数据进行转换以纳入渗透屏障。我们使用高斯场模型来估计这个额外参数,并绘制将街道作为渗透屏障的风险地图。我们在模拟数据集上展示了我们的方法,并将其应用于秘鲁阿雷基帕恰加斯病病媒——克氏锥蝽的数据。我们发现,最符合克氏锥蝽感染观察模式的变换后的景观,使不同城市街区相邻房屋之间的真实欧几里得距离大约增加了一倍。我们的研究结果可能会更好地指导对再次出现的昆虫种群的控制。