Center for Clinical Epidemiology & Biostatistics - Department of Biostatistics & Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
PLoS Comput Biol. 2013;9(1):e1002801. doi: 10.1371/journal.pcbi.1002801. Epub 2013 Jan 17.
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies.
随着城市化进程的加快,虫媒传染病在城市中迅速发展,需要采取城市控制策略。如果街道被证明是疾病媒介的障碍,那么城市街区可以作为一个方便和相关的研究和控制的空间单位。不幸的是,现有的空间分析工具不允许评估城市网格对疾病媒介存在的影响。在这里,我们首先提出了一种基于 Moran 空间自相关指数分解来测试街道对虫害影响的显著性的方法;其次,开发了一个高斯场潜在类别模型,以在控制协变量和不完全检测向量的情况下精细描述街道的影响。我们将这些方法应用于秘鲁阿雷基帕市的恰加斯病媒介三带喙库蚊感染的横断面数据。我们的 Moran 分解测试表明,在这种城市环境中,三带喙库蚊的分布受到街道的显著限制(p<0.05)。通过高斯场潜在类别模型,我们确认街道是防止感染的障碍,并进一步表明,在城市街区内房屋之间的相关性解释了 90%以上的矢量存在概率的空间成分。因此,城市街区可能是描述和控制城市环境中三带喙库蚊的合适空间单位。城市网格的特征可能会影响虫媒传染病的空间动态,在制定公共卫生政策时应加以考虑。