Universität Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany.
Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States.
Sci Rep. 2018 Nov 8;8(1):16561. doi: 10.1038/s41598-018-34925-3.
Accurate in vivo localisation of minimal amounts of functionalised gold-nanoparticles, enabling e.g. early-tumour diagnostics and pharmacokinetic tracking studies, requires a precision imaging system offering very high sensitivity, temporal and spatial resolution, large depth penetration, and arbitrarily long serial measurements. X-ray fluorescence imaging could offer such capabilities; however, its utilisation for human-sized scales is hampered by a high intrinsic background level. Here we measure and model this anisotropic background and present a spatial filtering scheme for background reduction enabling the localisation of nanoparticle-amounts as reported from small-animal tumour models. As a basic application study towards precision pharmacokinetics, we demonstrate specific localisation to sites of disease by adapting gold-nanoparticles with small targeting ligands in murine spinal cord injury models, at record sensitivity levels using sub-mm resolution. Both studies contribute to the future use of molecularly-targeted gold-nanoparticles as next-generation clinical diagnostic and pharmacokinetic tools.
准确的体内定位极少量功能化的金纳米粒子,例如,早期肿瘤诊断和药代动力学跟踪研究,需要一个精密的成像系统,提供非常高的灵敏度、时间和空间分辨率、大的深度穿透能力和任意长的序列测量。X 射线荧光成像是可以提供这种能力的;然而,由于固有背景水平很高,其在人类规模上的应用受到限制。在这里,我们测量和模拟这种各向异性的背景,并提出了一种空间滤波方案,以减少背景,从而能够定位从小鼠肿瘤模型报告的纳米粒子数量。作为向精准药代动力学应用的基础研究,我们通过在鼠脊髓损伤模型中用小靶向配体修饰金纳米粒子,在创纪录的灵敏度水平下,使用亚毫米分辨率,特异性地定位到疾病部位,证明了这种方法的特异性。这两项研究都有助于将靶向金纳米粒子作为下一代临床诊断和药代动力学工具的应用。