文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CAIX 适配体功能化靶向纳米气泡用于各种肿瘤的超声分子成像。

CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors.

机构信息

Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba District, Chongqing, China,

Department of Urology, Daping Hospital, Third Military Medical University (Army Medical University), Yuzhong District, Chongqing, China.

出版信息

Int J Nanomedicine. 2018 Oct 16;13:6481-6495. doi: 10.2147/IJN.S176287. eCollection 2018.


DOI:10.2147/IJN.S176287
PMID:30410333
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6199208/
Abstract

PURPOSE: Targeted nanobubbles can penetrate the tumor vasculature and achieve ultrasound molecular imaging (USMI) of tumor parenchymal cells. However, most targeted nanobubbles only achieve USMI of tumor parenchymal cells from one organ, and their distribution, loading ability, and binding ability in tumors are not clear. Therefore, targeted nanobubbles loaded with carbonic anhydrase IX (CAIX) aptamer were fabricated for USMI of various tumors, and the morphological basis of USMI with targeted nanobubbles was investigated. MATERIALS AND METHODS: The specificity of CAIX aptamer at the cellular level was measured by immunofluorescence and flow cytometry. Targeted nanobubbles loaded with CAIX aptamer were prepared by a maleimidethiol coupling reaction, and their binding ability to CAIX-positive tumor cells was analyzed in vitro. USMI of targeted and non-targeted nanobubbles was performed in tumor-bearing nude mice. The distribution, loading ability, and binding ability of targeted nanobubbles in xenograft tumor tissues were demonstrated by immunofluorescence. RESULTS: CAIX aptamer could specifically bind to CAIX-positive 786-O and Hela cells, rather than CAIX-negative BxPC-3 cells. Targeted nanobubbles loaded with CAIX aptamer had the advantages of small size, uniform distribution, regular shape, and high safety, and they could specifically accumulate around 786-O and Hela cells, while not binding to BxPC-3 cells in vitro. Targeted nanobubbles had significantly higher peak intensity and larger area under the curve than non-targeted nanobubbles in 786-O and Hela xenograft tumor tissues, while there was no significant difference in the imaging effects of targeted and non-targeted nanobubbles in BxPC-3 xenograft tumor tissues. Immunofluorescence demonstrated targeted nanobubbles could still load CAIX aptamer after penetrating the tumor vasculature and specifically binding to CAIX-positive tumor cells in xenograft tumor tissues. CONCLUSION: Targeted nanobubbles loaded with CAIX aptamer have a good imaging effect in USMI of tumor parenchymal cells, and can improve the accuracy of early diagnosis of malignant tumors from various organs.

摘要

目的:靶向纳米气泡可以穿透肿瘤血管,并实现肿瘤实质细胞的超声分子成像(USMI)。然而,大多数靶向纳米气泡只能实现来自一个器官的肿瘤实质细胞的 USMI,并且它们在肿瘤中的分布、载药能力和结合能力尚不清楚。因此,制备了负载碳酸酐酶 IX(CAIX)适体的靶向纳米气泡,用于各种肿瘤的 USMI,并研究了靶向纳米气泡进行 USMI 的形态学基础。

材料和方法:通过免疫荧光和流式细胞术测量 CAIX 适体在细胞水平上的特异性。通过马来酰亚胺硫醇偶联反应制备负载 CAIX 适体的靶向纳米气泡,并分析其与 CAIX 阳性肿瘤细胞的结合能力。在荷瘤裸鼠中进行靶向和非靶向纳米气泡的 USMI。通过免疫荧光证明了靶向纳米气泡在异种移植肿瘤组织中的分布、载药能力和结合能力。

结果:CAIX 适体可以特异性结合 CAIX 阳性的 786-O 和 Hela 细胞,而不是 CAIX 阴性的 BxPC-3 细胞。负载 CAIX 适体的靶向纳米气泡具有粒径小、分布均匀、形态规则和安全性高的优点,可以特异性地聚集在 786-O 和 Hela 细胞周围,而在体外不与 BxPC-3 细胞结合。在 786-O 和 Hela 异种移植肿瘤组织中,靶向纳米气泡的峰值强度和曲线下面积均显著高于非靶向纳米气泡,而在 BxPC-3 异种移植肿瘤组织中,靶向和非靶向纳米气泡的成像效果无显著差异。免疫荧光显示,靶向纳米气泡穿透肿瘤血管后仍能负载 CAIX 适体,并特异性结合异种移植肿瘤组织中的 CAIX 阳性肿瘤细胞。

结论:负载 CAIX 适体的靶向纳米气泡在肿瘤实质细胞的 USMI 中具有良好的成像效果,可提高对来自不同器官的恶性肿瘤的早期诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/a3e34f498a48/ijn-13-6481Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/b75fc131155f/ijn-13-6481Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/011c1ee294a0/ijn-13-6481Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/5c06f7de922b/ijn-13-6481Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/fd2557e3261f/ijn-13-6481Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/9958491e857a/ijn-13-6481Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/e1b74ccf5347/ijn-13-6481Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/3b91d4d86dbd/ijn-13-6481Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/35b38fe3f4c7/ijn-13-6481Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/5043aca29edf/ijn-13-6481Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/a3e34f498a48/ijn-13-6481Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/b75fc131155f/ijn-13-6481Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/011c1ee294a0/ijn-13-6481Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/5c06f7de922b/ijn-13-6481Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/fd2557e3261f/ijn-13-6481Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/9958491e857a/ijn-13-6481Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/e1b74ccf5347/ijn-13-6481Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/3b91d4d86dbd/ijn-13-6481Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/35b38fe3f4c7/ijn-13-6481Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/5043aca29edf/ijn-13-6481Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0927/6199208/a3e34f498a48/ijn-13-6481Fig10.jpg

相似文献

[1]
CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors.

Int J Nanomedicine. 2018-10-16

[2]
Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs.

J Nanobiotechnology. 2017-9-29

[3]
Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles.

Int J Nanomedicine. 2016-8-12

[4]
Construction of Nucleolin-Targeted Lipid Nanobubbles and Contrast-Enhanced Ultrasound Molecular Imaging in Triple-Negative Breast Cancer.

Pharm Res. 2020-7-14

[5]
Indocyanine Green-Loaded Nanobubbles Targeting Carbonic Anhydrase IX for Multimodal Imaging of Renal Cell Carcinoma.

Int J Nanomedicine. 2023

[6]
Preparation Of Nanobubbles Modified With A Small-Molecule CXCR4 Antagonist For Targeted Drug Delivery To Tumors And Enhanced Ultrasound Molecular Imaging.

Int J Nanomedicine. 2019-11-26

[7]
Evaluation of CAIX and CAXII Expression in Breast Cancer at Varied O2 Levels: CAIX is the Superior Surrogate Imaging Biomarker of Tumor Hypoxia.

Mol Imaging Biol. 2016-4

[8]
Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer.

Theranostics. 2018-10-6

[9]
Targeting CAIX with [Cu]XYIMSR-06 Small Molecular Radiotracer Enables Noninvasive PET Imaging of Malignant Glioma in U87 MG Tumor Cell Xenograft Mice.

Mol Pharm. 2019-3-12

[10]
Dynamic surveillance of tamoxifen-resistance in ER-positive breast cancer by CAIX-targeted ultrasound imaging.

Cancer Med. 2020-4

引用本文的文献

[1]
Advances and innovations in ultrasound-based tumor management: current applications and emerging directions.

Ultrasound J. 2025-8-12

[2]
Diagnostic, predictive and prognostic molecular biomarkers in clear cell renal cell carcinoma: A retrospective study.

Cancer Rep (Hoboken). 2024-6

[3]
Construction of a Tumor-Targeting Nanobubble with Multiple Scattering Interfaces and its Enhancement of Ultrasound Imaging.

Int J Nanomedicine. 2024

[4]
Nanomedicine for renal cell carcinoma: imaging, treatment and beyond.

J Nanobiotechnology. 2023-1-3

[5]
Synergistic delivery of resveratrol and ultrasmall copper-based nanoparticles by aptamer-functionalized ultrasound nanobubbles for the treatment of nonalcoholic fatty liver disease.

Front Physiol. 2022-9-9

[6]
Aptamers used for molecular imaging and theranostics - recent developments.

Theranostics. 2022

[7]
Molecular Ultrasound Imaging.

Nanomaterials (Basel). 2020-9-28

[8]
Carbonic Anhydrase IX in Renal Cell Carcinoma, Implications for Disease Management.

Int J Mol Sci. 2020-9-28

[9]
Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer.

J Nanobiotechnology. 2020-9-3

[10]
Silencing Promotes Mitochondrial Biogenesis, Increases Putrescine Toxicity and Decreases Cell Motility to Suppress ccRCC Progression.

Int J Mol Sci. 2020-8-18

本文引用的文献

[1]
Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging.

Chem Sci. 2018-4-24

[2]
Novel dual-function near-infrared II fluorescence and PET probe for tumor delineation and image-guided surgery.

Chem Sci. 2018-1-8

[3]
Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy.

J Control Release. 2018-3-6

[4]
Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes.

Biomaterials. 2018-2-8

[5]
Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer.

Drug Deliv. 2018-11

[6]
Contrast ultrasound LI-RADS LR-5 identifies hepatocellular carcinoma in cirrhosis in a multicenter restropective study of 1,006 nodules.

J Hepatol. 2017-11-11

[7]
Early detection versus primary prevention in the PLCO flexible sigmoidoscopy screening trial: Which has the greatest impact on mortality?

Cancer. 2017-12-15

[8]
Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs.

J Nanobiotechnology. 2017-9-29

[9]
UPAR targeted molecular imaging of cancers with small molecule-based probes.

Bioorg Med Chem. 2017-10-15

[10]
Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide--glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer.

Int J Nanomedicine. 2017-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索