Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, Jelgava LV-3001, Latvia; Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004 Riga, Latvia.
Department of Computer Systems, Faculty of Information Technologies, Latvia University of Life Sciences and Technologies, Liela iela 2, Jelgava LV-3001, Latvia.
Math Biosci. 2019 Jan;307:25-32. doi: 10.1016/j.mbs.2018.11.002. Epub 2018 Nov 9.
One of use cases for metabolic network optimisation of biotechnologically applied microorganisms is the in silico design of new strains with an improved distribution of metabolic fluxes. Global stochastic optimisation methods (genetic algorithms, evolutionary programing, particle swarm and others) can optimise complicated nonlinear kinetic models and are friendly for unexperienced user: they can return optimisation results with default method settings (population size, number of generations and others) and without adaptation of the model. Drawbacks of these methods (stochastic behaviour, undefined duration of optimisation, possible stagnation and no guaranty of reaching optima) cause optimisation result misinterpretation risks considering the very diverse educational background of the systems biology and synthetic biology research community. Different methods implemented in the COPASI software package are tested in this study to determine their ability to find feasible solutions and assess the convergence speed to the best value of the objective function. Special attention is paid to the potential misinterpretation of results. Optimisation methods are tested with additional constraints that can be introduced to ensure the biological feasibility of the resulting optimised design: (1) total enzyme activity constraint (called also amino acid pool constraint) to limit the sum of enzyme concentrations and (2) homeostatic constraint limiting steady state metabolite concentration corridor around the steady state concentrations of metabolites in the original model. Impact of additional constraints on the performance of optimisation methods and misinterpretation risks is analysed.
生物技术应用微生物代谢网络优化的一个用例是通过计算机设计具有改进代谢通量分布的新菌株。全局随机优化方法(遗传算法、进化编程、粒子群等)可以优化复杂的非线性动力学模型,并且对非专业用户友好:它们可以返回优化结果,默认方法设置(种群大小、代次数等),而无需对模型进行调整。这些方法的缺点(随机行为、优化时间不确定、可能停滞不前、无法保证达到最优解)导致在考虑系统生物学和合成生物学研究界非常多样化的教育背景时,存在对优化结果进行错误解释的风险。本研究测试了 COPASI 软件包中实现的不同方法,以确定它们找到可行解决方案的能力,并评估其对目标函数最佳值的收敛速度。特别关注结果可能被错误解释的问题。通过引入额外的约束条件来测试优化方法,以确保生成的优化设计的生物学可行性:(1)总酶活性约束(也称为氨基酸池约束),以限制酶浓度的总和;(2)稳态约束,限制代谢物浓度在原始模型中代谢物稳态浓度周围的稳态代谢物浓度走廊。分析了额外约束对优化方法性能和错误解释风险的影响。