Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8?1UB, UK.
Institute of Microbiology and Biotechnology, University of Latvia, Riga LV-1004, Latvia.
Bioinformatics. 2017 Sep 15;33(18):2966-2967. doi: 10.1093/bioinformatics/btx363.
Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons.
SpaceScanner uses parallel optimization runs for automatic termination of optimization tasks in case of consensus and consecutively applies a pre-defined set of global stochastic optimization methods in case of stagnation in the currently used method. Automatic scan of adjustable parameter combination subsets for best objective function values is possible with a summary file of ranked solutions.
https://github.com/atiselsts/spacescanner .
Supplementary data are available at Bioinformatics online.
由于其普遍适用性,全局随机优化方法在设计生化网络改进方面很受欢迎。全局随机优化方法的缺点是:(i)不能保证找到全局最优解,(ii)没有明确的优化运行终止标准,(iii)没有检测优化运行停滞的标准。这些缺点的影响可以部分通过人工工作来补偿,但当由于可调参数的组合爆炸或其他原因导致解空间很大时,人工工作会变得效率低下。
SpaceScanner 使用并行优化运行来自动终止优化任务,如果达到共识,则会在当前使用的方法停滞的情况下连续应用一组预定义的全局随机优化方法。通过排名解决方案的摘要文件,可以自动扫描可调参数组合子集以获得最佳目标函数值。
https://github.com/atiselsts/spacescanner。
补充数据可在Bioinformatics 在线获得。