Small Madeline, Faglie Addison, Craig Alexandra J, Pieper Martha, Fernand Narcisse Vivian E, Neuenschwander Pierre F, Chou Shih-Feng
Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA.
Department of Chemistry and Physics, School of Arts and Sciences, LeTourneau University, Longview, TX 75607, USA.
Micromachines (Basel). 2018 May 17;9(5):243. doi: 10.3390/mi9050243.
Advances in nanotechnology and nanomaterials have enabled the development of functional biomaterials with surface properties that reduce the rate of the device rejection in injectable and implantable biomaterials. In addition, the surface of biomaterials can be functionalized with macromolecules for stimuli-responsive purposes to improve the efficacy and effectiveness in drug release applications. Furthermore, macromolecule-grafted surfaces exhibit a hierarchical nanostructure that mimics nanotextured surfaces for the promotion of cellular responses in tissue engineering. Owing to these unique properties, this review focuses on the grafting of macromolecules on the surfaces of various biomaterials (e.g., films, fibers, hydrogels, and etc.) to create nanostructure-enabled and macromolecule-grafted surfaces for biomedical applications, such as thrombosis prevention and wound healing. The macromolecule-modified surfaces can be treated as a functional device that either passively inhibits adverse effects from injectable and implantable devices or actively delivers biological agents that are locally based on proper stimulation. In this review, several methods are discussed to enable the surface of biomaterials to be used for further grafting of macromolecules. In addition, we review surface-modified films (coatings) and fibers with respect to several biomedical applications. Our review provides a scientific update on the current achievements and future trends of nanostructure-enabled and macromolecule-grafted surfaces in biomedical applications.
纳米技术和纳米材料的进展推动了具有特定表面特性的功能性生物材料的发展,这些特性能够降低可注射和可植入生物材料的装置排斥率。此外,生物材料的表面可以用大分子进行功能化修饰,以实现刺激响应功能,从而提高药物释放应用中的疗效和有效性。此外,大分子接枝表面呈现出一种分级纳米结构,类似于纳米纹理表面,可促进组织工程中的细胞反应。由于这些独特的性质,本综述聚焦于在各种生物材料(如薄膜、纤维、水凝胶等)表面接枝大分子,以创建具有纳米结构且接枝了大分子的表面,用于生物医学应用,如预防血栓形成和伤口愈合。大分子修饰的表面可被视为一种功能性装置,它既可以被动地抑制可注射和可植入装置的不良影响,也可以基于适当的刺激主动递送局部的生物制剂。在本综述中,讨论了几种使生物材料表面能够进一步接枝大分子的方法。此外,我们还针对几种生物医学应用对表面改性薄膜(涂层)和纤维进行了综述。我们的综述提供了关于具有纳米结构且接枝了大分子的表面在生物医学应用方面的当前成就和未来趋势的科学更新。