Department of Medicine, The University of Chicago, Chicago, IL 60637.
Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721.
Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11349-E11358. doi: 10.1073/pnas.1810568115. Epub 2018 Nov 14.
Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies (GWAS) have identified chromosome 1p32.2 as strongly associated with CAD/IS; however, the causal mechanism related to this locus remains unknown. Using statistical analyses, assay of transposase accessible chromatin with whole-genome sequencing (ATAC-seq), H3K27ac/H3K4me2 ChIP with whole-genome sequencing (ChIP-seq), and CRISPR interference in human aortic endothelial cells (HAECs), our results demonstrate that rs17114036, a common noncoding polymorphism at 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR-Cas9-based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional shear stress by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus (caQTL) mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays demonstrate that CAD/IS-protective allele at rs17114036 in PLPP3 intron 5 confers increased endothelial enhancer activity. ChIP-PCR and luciferase assays show that CAD/IS-protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2 (KLF2), which increases the enhancer activity under unidirectional flow. These results demonstrate that a human SNP contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related -regulatory elements provide a previously unappreciated layer of regulatory control in cellular mechanosensing mechanisms.
生物力学线索动态控制主要的细胞过程,但遗传变异是否主动参与机械感受机制仍未被探索。血管稳态受血流动力学的严密调控。在动脉分支和分叉处受到紊乱血流的刺激会导致血管内皮的组成性激活,这是动脉粥样硬化的主要原因,也是冠状动脉疾病(CAD)和缺血性中风(IS)的主要病因。相反,单向流动促进静止的内皮细胞。全基因组关联研究(GWAS)已经确定 1 号染色体 1p32.2 与 CAD/IS 强烈相关;然而,与该基因座相关的因果机制仍然未知。使用统计分析、转座酶可及染色质的全基因组测序(ATAC-seq)分析、H3K27ac/H3K4me2 染色质免疫沉淀测序(ChIP-seq)分析以及人主动脉内皮细胞(HAECs)中的 CRISPR 干扰,我们的结果表明,rs17114036 是 1p32.2 上常见的非编码多态性,位于由血流动力学动态调控的内皮增强子中。基于 CRISPR-Cas9 的基因组编辑表明,rs17114036 所在的区域通过调节磷脂酶 3(PLPP3)促进单向剪切应力下的内皮静止。使用 56 个供体的 HAECs 进行染色质可及性数量性状基因座(caQTL)作图、7 个供体的等位基因不平衡测定和荧光素酶测定表明,PLPP3 内含子 5 中的 rs17114036 的 CAD/IS 保护性等位基因赋予内皮增强子更高的活性。ChIP-PCR 和荧光素酶测定表明,rs17114036 的 CAD/IS 保护性等位基因为转录因子 Kruppel 样因子 2(KLF2)创建了一个结合位点,该结合位点在单向流动下增加了增强子活性。这些结果表明,人类 SNP 有助于关键的内皮机械转导机制,并表明人类单倍型和相关调节元件为细胞机械感受机制提供了以前未被重视的调控控制层。