Hatsuda K, Mine H, Nakamura T, Li J, Wu R, Katsumoto S, Haruyama J
Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan.
Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
Sci Adv. 2018 Nov 9;4(11):eaau6915. doi: 10.1126/sciadv.aau6915. eCollection 2018 Nov.
Realization of the quantum spin Hall effect in graphene devices has remained an outstanding challenge dating back to the inception of the field of topological insulators. Graphene's exceptionally weak spin-orbit coupling-stemming from carbon's low mass-poses the primary obstacle. We experimentally and theoretically study artificially enhanced spin-orbit coupling in graphene via random decoration with dilute BiTe nanoparticles. Multiterminal resistance measurements suggest the presence of helical edge states characteristic of a quantum spin Hall phase; the magnetic field and temperature dependence of the resistance peaks, x-ray photoelectron spectra, scanning tunneling spectroscopy, and first-principles calculations further support this scenario. These observations highlight a pathway to spintronics and quantum information applications in graphene-based quantum spin Hall platforms.
自拓扑绝缘体领域诞生以来,在石墨烯器件中实现量子自旋霍尔效应一直是一项重大挑战。石墨烯中自旋轨道耦合异常微弱(源于碳的低质量)是主要障碍。我们通过用稀BiTe纳米颗粒进行随机修饰,对石墨烯中人工增强的自旋轨道耦合进行了实验和理论研究。多端电阻测量表明存在量子自旋霍尔相特有的螺旋边缘态;电阻峰的磁场和温度依赖性、x射线光电子能谱、扫描隧道谱以及第一性原理计算进一步支持了这一情况。这些观察结果突出了基于石墨烯的量子自旋霍尔平台在自旋电子学和量子信息应用方面的一条途径。