Departments of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 8891692, Japan.
Departments of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 8891692, Japan.
J Neuroradiol. 2020 May;47(3):197-202. doi: 10.1016/j.neurad.2018.10.005. Epub 2018 Nov 12.
Neurite orientation dispersion and density imaging (NODDI) is a new technique that applies a three-diffusion-compartment biophysical model. We assessed the usefulness of NODDI for the differentiation of glioblastoma from solitary brain metastasis.
NODDI data were prospectively obtained on a 3T magnetic resonance imaging (MRI) scanner from patients with previously untreated, histopathologically confirmed glioblastoma (n = 9) or solitary brain metastasis (n = 6). Using the NODDI Matlab Toolbox, we generated maps of the intra-cellular, extra-cellular, and isotropic volume (VIC, VEC, VISO) fraction. Apparent diffusion coefficient - and fraction anisotropy maps were created from the diffusion data. On each map we manually drew a region of interest around the peritumoral signal-change (PSC) - and the enhancing solid area of the lesion. Differences between glioblastoma and metastatic lesions were assessed and the area under the receiver operating characteristic curve (AUC) was determined.
On VEC maps the mean value of the PSC area was significantly higher for glioblastoma than metastasis (P < 0.05); on VISO maps it tended to be higher for metastasis than glioblastoma. There was no significant difference on the other maps. Among the 5 parameters, the VEC fraction in the PSC area showed the highest diagnostic performance. The VEC threshold value of ≥ 0.48 yielded 100% sensitivity, 83.3% specificity, and an AUC of 0.87 for differentiating between the two tumor types.
NODDI compartment maps of the PSC area may help to differentiate between glioblastoma and solitary brain metastasis.
神经突方向分散与密度成像(NODDI)是一种应用三扩散室生物物理模型的新技术。我们评估了 NODDI 对鉴别胶质母细胞瘤与单发脑转移瘤的作用。
对 9 例经组织病理学证实的未经治疗的胶质母细胞瘤患者和 6 例单发脑转移瘤患者的 3T 磁共振成像(MRI)数据进行前瞻性 NODDI 数据采集。使用 NODDI Matlab 工具箱,生成细胞内、细胞外和各向同性体积(VIC、VEC、VISO)分数图。从扩散数据中生成表观扩散系数(ADC)和分数各向异性(FA)图。在每张图上,我们手动在瘤周信号改变(PSC)区和病变强化实体区周围绘制感兴趣区。评估胶质母细胞瘤和转移瘤之间的差异,并确定受试者工作特征曲线(ROC)下的面积(AUC)。
在 VEC 图上,胶质母细胞瘤 PSC 区的平均 VEC 值明显高于转移瘤(P<0.05);在 VISO 图上,转移瘤的 VISO 值高于胶质母细胞瘤。其他图上无显著差异。在这 5 个参数中,PSC 区的 VEC 分数具有最高的诊断性能。VEC 阈值≥0.48 时,鉴别两种肿瘤类型的灵敏度为 100%,特异度为 83.3%,AUC 为 0.87。
PSC 区的 NODDI 分区图可能有助于鉴别胶质母细胞瘤与单发脑转移瘤。