Suppr超能文献

使用神经纤维取向离散和密度成像区分胶质母细胞瘤和单发脑转移瘤。

Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging.

机构信息

Departments of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 8891692, Japan.

Departments of Radiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 8891692, Japan.

出版信息

J Neuroradiol. 2020 May;47(3):197-202. doi: 10.1016/j.neurad.2018.10.005. Epub 2018 Nov 12.

Abstract

BACKGROUND AND PURPOSE

Neurite orientation dispersion and density imaging (NODDI) is a new technique that applies a three-diffusion-compartment biophysical model. We assessed the usefulness of NODDI for the differentiation of glioblastoma from solitary brain metastasis.

METHODS

NODDI data were prospectively obtained on a 3T magnetic resonance imaging (MRI) scanner from patients with previously untreated, histopathologically confirmed glioblastoma (n = 9) or solitary brain metastasis (n = 6). Using the NODDI Matlab Toolbox, we generated maps of the intra-cellular, extra-cellular, and isotropic volume (VIC, VEC, VISO) fraction. Apparent diffusion coefficient - and fraction anisotropy maps were created from the diffusion data. On each map we manually drew a region of interest around the peritumoral signal-change (PSC) - and the enhancing solid area of the lesion. Differences between glioblastoma and metastatic lesions were assessed and the area under the receiver operating characteristic curve (AUC) was determined.

RESULTS

On VEC maps the mean value of the PSC area was significantly higher for glioblastoma than metastasis (P < 0.05); on VISO maps it tended to be higher for metastasis than glioblastoma. There was no significant difference on the other maps. Among the 5 parameters, the VEC fraction in the PSC area showed the highest diagnostic performance. The VEC threshold value of ≥ 0.48 yielded 100% sensitivity, 83.3% specificity, and an AUC of 0.87 for differentiating between the two tumor types.

CONCLUSIONS

NODDI compartment maps of the PSC area may help to differentiate between glioblastoma and solitary brain metastasis.

摘要

背景与目的

神经突方向分散与密度成像(NODDI)是一种应用三扩散室生物物理模型的新技术。我们评估了 NODDI 对鉴别胶质母细胞瘤与单发脑转移瘤的作用。

方法

对 9 例经组织病理学证实的未经治疗的胶质母细胞瘤患者和 6 例单发脑转移瘤患者的 3T 磁共振成像(MRI)数据进行前瞻性 NODDI 数据采集。使用 NODDI Matlab 工具箱,生成细胞内、细胞外和各向同性体积(VIC、VEC、VISO)分数图。从扩散数据中生成表观扩散系数(ADC)和分数各向异性(FA)图。在每张图上,我们手动在瘤周信号改变(PSC)区和病变强化实体区周围绘制感兴趣区。评估胶质母细胞瘤和转移瘤之间的差异,并确定受试者工作特征曲线(ROC)下的面积(AUC)。

结果

在 VEC 图上,胶质母细胞瘤 PSC 区的平均 VEC 值明显高于转移瘤(P<0.05);在 VISO 图上,转移瘤的 VISO 值高于胶质母细胞瘤。其他图上无显著差异。在这 5 个参数中,PSC 区的 VEC 分数具有最高的诊断性能。VEC 阈值≥0.48 时,鉴别两种肿瘤类型的灵敏度为 100%,特异度为 83.3%,AUC 为 0.87。

结论

PSC 区的 NODDI 分区图可能有助于鉴别胶质母细胞瘤与单发脑转移瘤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验