Suppr超能文献

高级别胶质瘤与单发脑转移瘤的鉴别诊断:五种弥散加权 MRI 模型的比较。

Differentiation between high-grade gliomas and solitary brain metastases: a comparison of five diffusion-weighted MRI models.

机构信息

Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.

出版信息

BMC Med Imaging. 2020 Nov 23;20(1):124. doi: 10.1186/s12880-020-00524-w.

Abstract

BACKGROUND

To compare the diagnostic performance of neurite orientation dispersion and density imaging (NODDI), mean apparent propagator magnetic resonance imaging (MAP-MRI), diffusion kurtosis imaging (DKI), diffusion tensor imaging (DTI) and diffusion-weighted imaging (DWI) in distinguishing high-grade gliomas (HGGs) from solitary brain metastases (SBMs).

METHODS

Patients with previously untreated, histopathologically confirmed HGGs (n = 20) or SBMs (n = 21) appearing as a solitary and contrast-enhancing lesion on structural MRI were prospectively recruited to undergo diffusion-weighted MRI. DWI data were obtained using a q-space Cartesian grid sampling procedure and were processed to generate parametric maps by fitting the NODDI, MAP-MRI, DKI, DTI and DWI models. The diffusion metrics of the contrast-enhancing tumor and peritumoral edema were measured. Differences in the diffusion metrics were compared between HGGs and SBMs, followed by receiver operating characteristic (ROC) analysis and the Hanley and McNeill test to determine their diagnostic performances.

RESULTS

NODDI-based isotropic volume fraction (V) and orientation dispersion index (ODI); MAP-MRI-based mean-squared displacement (MSD) and q-space inverse variance (QIV); DKI-generated radial, mean diffusivity and fractional anisotropy (RD, MD and FA); and DTI-generated radial, mean diffusivity and fractional anisotropy (RD, MD and FA) of the contrast-enhancing tumor were significantly different between HGGs and SBMs (p < 0.05). The best single discriminative parameters of each model were V, MSD, RD and RD for NODDI, MAP-MRI, DKI and DTI, respectively. The AUC of V (0.871) was significantly higher than that of MSD (0.736), RD (0.760) and RD (0.733) (p < 0.05).

CONCLUSION

NODDI outperforms MAP-MRI, DKI, DTI and DWI in differentiating between HGGs and SBMs. NODDI-based V has the highest performance.

摘要

背景

比较神经纤维各向异性分数弥散成像(NODDI)、平均表观扩散系数磁共振成像(MAP-MRI)、扩散峰度成像(DKI)、弥散张量成像(DTI)和扩散加权成像(DWI)在鉴别高级别胶质瘤(HGG)和单发脑转移瘤(SBM)中的诊断性能。

方法

前瞻性纳入 20 例经组织病理学证实的初治 HGG 和 21 例单发强化占位的 SBM 患者,行弥散加权磁共振成像。采用 q 空间笛卡尔网格采样方法获取 DWI 数据,通过拟合 NODDI、MAP-MRI、DKI、DTI 和 DWI 模型生成参数图。测量增强肿瘤和瘤周水肿的弥散指标。比较 HGG 和 SBM 之间的弥散指标差异,然后进行受试者工作特征(ROC)分析和 Hanley 和 McNeill 检验,以确定其诊断性能。

结果

NODDI 各向同性体积分数(V)和各向异性指数(ODI)、MAP-MRI 平均平方位移(MSD)和 q 空间倒数方差(QIV)、DKI 生成的径向弥散度、平均弥散度和各向异性分数(RD、MD 和 FA)、DTI 生成的径向弥散度、平均弥散度和各向异性分数(RD、MD 和 FA)在 HGG 和 SBM 之间差异均有统计学意义(p<0.05)。各模型最佳单分辨参数分别为 NODDI 的 V、MAP-MRI 的 MSD、DKI 的 RD 和 DTI 的 RD。V 的 AUC(0.871)显著高于 MSD(0.736)、RD(0.760)和 RD(0.733)(p<0.05)。

结论

与 MAP-MRI、DKI、DTI 和 DWI 相比,NODDI 能更好地鉴别 HGG 和 SBM。基于 NODDI 的 V 具有最高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b94f/7684933/16f7d5989684/12880_2020_524_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验