Suppr超能文献

一种可解释的 MRI 放射组学量子神经网络,使用量子退火进行特征选择,以区分大脑大转移和高级别胶质瘤。

An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection.

机构信息

Radiation Oncology Department, Hôtel-Dieu de France Hospital, Saint Joseph University, Beirut, Lebanon.

ICube Laboratory, University of Strasbourg, Strasbourg, France.

出版信息

J Digit Imaging. 2023 Dec;36(6):2335-2346. doi: 10.1007/s10278-023-00886-x. Epub 2023 Jul 28.

Abstract

Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D'Wave's quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.

摘要

单发大的脑转移瘤 (LBM) 和高级别胶质瘤 (HGG) 在 MRI 上有时难以区分。这两种实体的治疗方法有很大的不同,因此迫切需要非侵入性方法来帮助区分它们,以避免潜在的致命活检和手术。我们在此探讨了使用量子退火互信息 (MI) 特征选择方法的 MRI 放射组学变分量子神经网络 (QNN) 的性能和可解释性。我们回顾性地纳入了 2012 年至 2019 年间接受过对比增强 T1 加权 (CE-T1) MRI 的 423 例 HGG 和 LBM (>2cm) 患者。排除后,保留了 72 例 HGG 和 129 例 LBM。对肿瘤进行手动分割,并创建了一个 5mm 的肿瘤周围环。对 MRI 图像进行预处理,并提取了 1813 个放射组学特征。基于 MI 选择了一组最佳特征。MI 和条件-MI 被嵌入到二次无约束二进制优化 (QUBO) 公式中,该公式被映射到伊辛模型,并提交给 D-Wave 的量子退火机来求解最佳的 10 个特征组合。使用 PennyLane 库将 10 个选定的特征嵌入到一个 2 量子比特 QNN 中。在测试集上,根据平衡准确率 (bACC) 和接收器操作特征曲线下面积 (ROC-AUC) 评估模型性能。将模型性能与两个经典模型进行基准比较:密集神经网络 (DNN) 和极端梯度增强 (XGB)。计算 Shapley 值以解释测试集上的样本预测。最佳的 10 个特征组合包括 6 个肿瘤特征和 4 个环特征。对于 QNN、DNN 和 XGB,分别为训练 ROC-AUC 为 0.86、0.95 和 0.94;测试 ROC-AUC 为 0.76、0.75 和 0.79;测试 bACC 为 0.74、0.73 和 0.72。两个最具影响力的特征是肿瘤拉普拉斯高斯 GLRLM-Entropy 和球形度。我们使用具有量子信息特征选择的准确可解释的 QNN 模型来区分 CE-T1 脑 MRI 上的 LBM 和 HGG。该模型的性能可与最先进的经典模型相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2901/10584786/d5042ad6efae/10278_2023_886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验