Suppr超能文献

使用深度相机和腕戴式惯性测量单元的个性化无标记上身跟踪

Personalized Markerless Upper-Body Tracking with a Depth Camera and Wrist-Worn Inertial Measurement Units<sup/>.

作者信息

Jatesiktat Prayook, Anopas Dollaporn, Ang Wei Tech

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-6. doi: 10.1109/EMBC.2018.8513068.

Abstract

A markerless motion capture technique is proposed based on a fusion between a depth camera (Kinect V2) and a pair of wrist-worn inertial measurement units (IMU). The method creates a personalized articulated human mesh model from one depth image frame and uses that model to improve the accuracy of the upper-body joint tracking. The IMUs are useful as an additional clue for the arm tracking, especially during an occlusion. An evaluation of the method against a marker-based system as a gold standard using data from 6 subjects is done. The result shows over 20% reduction in upper-limb joint position errors when compared to Kinect's skeleton tracking. All the collected data are calibrated, synchronized, and made publicly available for research purposes.

摘要

提出了一种基于深度相机(Kinect V2)和一对腕戴式惯性测量单元(IMU)融合的无标记运动捕捉技术。该方法从一个深度图像帧创建个性化的人体关节网格模型,并使用该模型提高上身关节跟踪的准确性。IMU作为手臂跟踪的额外线索很有用,尤其是在遮挡期间。使用来自6名受试者的数据,以基于标记的系统作为金标准对该方法进行了评估。结果表明,与Kinect的骨骼跟踪相比,上肢关节位置误差降低了20%以上。所有收集的数据都经过校准、同步,并公开提供用于研究目的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验