Suppr超能文献

自主建模重复性运动用于康复运动监测。

Autonomous modeling of repetitive movement for rehabilitation exercise monitoring.

机构信息

Rehabilitation Research Institute of Singapore, Nanyang Technological University, Singapore, Singapore.

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.

出版信息

BMC Med Inform Decis Mak. 2022 Jul 3;22(1):175. doi: 10.1186/s12911-022-01907-5.

Abstract

BACKGROUND

Insightful feedback generation for daily home-based stroke rehabilitation is currently unavailable due to the inefficiency of exercise inspection done by therapists. We aim to produce a compact anomaly representation that allows a therapist to pay attention to only a few specific sections in a long exercise session record and boost their efficiency in feedback generation.

METHODS

This study proposes a data-driven technique to model a repetitive exercise using unsupervised phase learning on an artificial neural network and statistical learning on principal component analysis (PCA). After a model is built on a set of normal healthy movements, the model can be used to extract a sequence of anomaly scores from a movement of the same prescription.

RESULTS

The method not only works on a standard marker-based motion capture system but also performs well on a more compact and affordable motion capture system based-on Kinect V2 and wrist-worn inertial measurement units that can be used at home. An evaluation of four different exercises shows its potential in separating anomalous movements from normal ones with an average area under the curve (AUC) of 0.9872 even on the compact motion capture system.

CONCLUSIONS

The proposed processing technique has the potential to help clinicians in providing high-quality feedback for telerehabilitation in a more scalable way.

摘要

背景

由于治疗师进行运动检查的效率低下,目前无法为日常家庭脑卒中康复提供有见地的反馈。我们旨在生成紧凑的异常表示形式,使治疗师只需关注长运动记录中的几个特定部分,并提高他们生成反馈的效率。

方法

本研究提出了一种数据驱动的技术,使用人工神经网络的无监督相位学习和主成分分析(PCA)上的统计学习来对重复运动进行建模。在一组正常健康运动上构建模型后,该模型可用于从相同处方的运动中提取一系列异常分数。

结果

该方法不仅适用于标准基于标记的运动捕捉系统,而且在基于 Kinect V2 和腕戴惯性测量单元的更紧凑且经济实惠的运动捕捉系统上也能很好地工作,该系统可在家中使用。对四项不同运动的评估表明,即使在紧凑的运动捕捉系统上,该方法也具有将异常运动与正常运动区分开来的潜力,平均曲线下面积(AUC)为 0.9872。

结论

所提出的处理技术有可能帮助临床医生以更具可扩展性的方式为远程康复提供高质量的反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2d2/9250743/4f301ead5612/12911_2022_1907_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验