Suppr超能文献

使用递归神经网络对重症监护病房中的镇静进行脑监测。

Brain Monitoring of Sedation in the Intensive Care Unit Using a Recurrent Neural Network.

作者信息

Sun Haoqi, Nagaraj Sunil B, Akeju Oluwaseun, Purdon Patrick L, Westover Brandon M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4. doi: 10.1109/EMBC.2018.8513185.

Abstract

Over and under-sedation are common in critically ill patients admitted to the Intensive Care Unit. Clinical assessments provide limited time resolution and are based on behavior rather than the brain itself. Existing brain monitors have been developed primarily for non-ICU settings. Here, we use a clinical dataset from 154 ICU patients in whom the Richmond Agitation-Sedation Score is assessed about every 2 hours. We develop a recurrent neural network (RNN) model to discriminate between deep vs. no sedation, trained end-to-end from raw EEG spectrograms without any feature extraction. We obtain an average area under the ROC of 0.8 on 10-fold cross validation across patients. Our RNN is able to provide reliable estimates of sedation levels consistently better compared to a feed-forward model with simple smoothing. Decomposing the prediction error in terms of sedatives reveals that patient-specific calibration for sedatives is expected to further improve sedation monitoring.

摘要

在入住重症监护病房的重症患者中,镇静过度和不足的情况很常见。临床评估提供的时间分辨率有限,且基于行为而非大脑本身。现有的脑监测仪主要是为非重症监护病房环境开发的。在此,我们使用了来自154名重症监护病房患者的临床数据集,其中里士满躁动镇静评分大约每2小时评估一次。我们开发了一种循环神经网络(RNN)模型,用于区分深度镇静与无镇静状态,该模型从原始脑电图频谱图进行端到端训练,无需任何特征提取。在对患者进行10倍交叉验证时,我们获得的ROC曲线下平均面积为0.8。与具有简单平滑功能的前馈模型相比,我们的RNN能够始终如一地提供更可靠的镇静水平估计。根据镇静剂分解预测误差表明,针对镇静剂的患者特异性校准有望进一步改善镇静监测。

相似文献

1
Brain Monitoring of Sedation in the Intensive Care Unit Using a Recurrent Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4. doi: 10.1109/EMBC.2018.8513185.
2
Feasibility of continuous sedation monitoring in critically ill intensive care unit patients using the NeuroSENSE WAV index.
J Clin Monit Comput. 2018 Dec;32(6):1081-1091. doi: 10.1007/s10877-018-0115-6. Epub 2018 Feb 20.
4
Clinical sedation scores as indicators of sedative and analgesic drug exposure in intensive care unit patients.
Am J Geriatr Pharmacother. 2007 Sep;5(3):218-31. doi: 10.1016/j.amjopharm.2007.10.005.
5
Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial.
JAMA. 2009 Feb 4;301(5):489-99. doi: 10.1001/jama.2009.56. Epub 2009 Feb 2.
7
The correlation between the Richmond agitation-sedation scale and bispectral index during dexmedetomidine sedation.
Eur J Anaesthesiol. 2006 Apr;23(4):300-4. doi: 10.1017/S0265021506000081. Epub 2006 Jan 27.
8
Early intensive care sedation predicts long-term mortality in ventilated critically ill patients.
Am J Respir Crit Care Med. 2012 Oct 15;186(8):724-31. doi: 10.1164/rccm.201203-0522OC. Epub 2012 Aug 2.
10
The power of N-PASS, aEEG, and BIS in detecting different levels of sedation in neonates: A preliminary study.
Paediatr Anaesth. 2018 Dec;28(12):1096-1104. doi: 10.1111/pan.13509. Epub 2018 Oct 29.

引用本文的文献

1
Biophysical Model: A Promising Method in the Study of the Mechanism of Propofol: A Narrative Review.
Comput Intell Neurosci. 2022 May 17;2022:8202869. doi: 10.1155/2022/8202869. eCollection 2022.
3
Patient-Specific Sedation Management via Deep Reinforcement Learning.
Front Digit Health. 2021 Mar 31;3:608893. doi: 10.3389/fdgth.2021.608893. eCollection 2021.
4
Incidence and Risk Factors of Delirium in the Intensive Care Unit: A Prospective Cohort.
Biomed Res Int. 2021 Jan 8;2021:6219678. doi: 10.1155/2021/6219678. eCollection 2021.
5
Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach.
Anesth Analg. 2020 May;130(5):1211-1221. doi: 10.1213/ANE.0000000000004651.

本文引用的文献

1
Patient-Specific Classification of ICU Sedation Levels From Heart Rate Variability.
Crit Care Med. 2017 Jul;45(7):e683-e690. doi: 10.1097/CCM.0000000000002364.
2
Automatic Classification of Sedation Levels in ICU Patients Using Heart Rate Variability.
Crit Care Med. 2016 Sep;44(9):e782-9. doi: 10.1097/CCM.0000000000001708.
3
Monitoring and delivery of sedation.
Br J Anaesth. 2014 Dec;113 Suppl 2:ii37-47. doi: 10.1093/bja/aeu378.
4
Sedation and delirium in the intensive care unit.
N Engl J Med. 2014 Jan 30;370(5):444-54. doi: 10.1056/NEJMra1208705.
5
Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression.
J Neural Eng. 2013 Oct;10(5):056017. doi: 10.1088/1741-2560/10/5/056017. Epub 2013 Sep 10.
6
Sedation in the intensive care setting.
Clin Pharmacol. 2012;4:53-63. doi: 10.2147/CPAA.S26582. Epub 2012 Oct 25.
7
Monitoring the depth of anaesthesia.
Sensors (Basel). 2010;10(12):10896-935. doi: 10.3390/s101210896. Epub 2010 Dec 3.
8
The incidence of sub-optimal sedation in the ICU: a systematic review.
Crit Care. 2009;13(6):R204. doi: 10.1186/cc8212. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验