Sun Haoqi, Nagaraj Sunil B, Akeju Oluwaseun, Purdon Patrick L, Westover Brandon M
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4. doi: 10.1109/EMBC.2018.8513185.
Over and under-sedation are common in critically ill patients admitted to the Intensive Care Unit. Clinical assessments provide limited time resolution and are based on behavior rather than the brain itself. Existing brain monitors have been developed primarily for non-ICU settings. Here, we use a clinical dataset from 154 ICU patients in whom the Richmond Agitation-Sedation Score is assessed about every 2 hours. We develop a recurrent neural network (RNN) model to discriminate between deep vs. no sedation, trained end-to-end from raw EEG spectrograms without any feature extraction. We obtain an average area under the ROC of 0.8 on 10-fold cross validation across patients. Our RNN is able to provide reliable estimates of sedation levels consistently better compared to a feed-forward model with simple smoothing. Decomposing the prediction error in terms of sedatives reveals that patient-specific calibration for sedatives is expected to further improve sedation monitoring.
在入住重症监护病房的重症患者中,镇静过度和不足的情况很常见。临床评估提供的时间分辨率有限,且基于行为而非大脑本身。现有的脑监测仪主要是为非重症监护病房环境开发的。在此,我们使用了来自154名重症监护病房患者的临床数据集,其中里士满躁动镇静评分大约每2小时评估一次。我们开发了一种循环神经网络(RNN)模型,用于区分深度镇静与无镇静状态,该模型从原始脑电图频谱图进行端到端训练,无需任何特征提取。在对患者进行10倍交叉验证时,我们获得的ROC曲线下平均面积为0.8。与具有简单平滑功能的前馈模型相比,我们的RNN能够始终如一地提供更可靠的镇静水平估计。根据镇静剂分解预测误差表明,针对镇静剂的患者特异性校准有望进一步改善镇静监测。