Suppr超能文献

一种用于改进胸部X光片中结核病检测的新型模型堆叠泛化方法。

A novel stacked generalization of models for improved TB detection in chest radiographs.

作者信息

Rajaraman S, Candemir S, Xue Z, Alderson P O, Kohli M, Abuya J, Thoma G R, Antani S

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:718-721. doi: 10.1109/EMBC.2018.8512337.

Abstract

Chest x-ray (CXR) analysis is a common part of the protocol for confirming active pulmonary Tuberculosis (TB). However, many TB endemic regions are severely resource constrained in radiological services impairing timely detection and treatment. Computer-aided diagnosis (CADx) tools can supplement decision-making while simultaneously addressing the gap in expert radiological interpretation during mobile field screening. These tools use hand-engineered and/or convolutional neural networks (CNN) computed image features. CNN, a class of deep learning (DL) models, has gained research prominence in visual recognition. It has been shown that Ensemble learning has an inherent advantage of constructing non-linear decision making functions and improve visual recognition. We create a stacking of classifiers with hand-engineered and CNN features toward improving TB detection in CXRs. The results obtained are highly promising and superior to the state-of-the-art.

摘要

胸部X光(CXR)分析是确诊活动性肺结核(TB)方案中的常见部分。然而,许多结核病流行地区的放射服务资源严重受限,这影响了及时检测和治疗。计算机辅助诊断(CADx)工具可以辅助决策,同时弥补移动现场筛查期间专家放射学解读方面的差距。这些工具使用手工设计和/或卷积神经网络(CNN)计算的图像特征。CNN是一类深度学习(DL)模型,在视觉识别方面已成为研究热点。研究表明,集成学习在构建非线性决策函数和提高视觉识别方面具有内在优势。我们创建了一个由手工设计特征和CNN特征组成的分类器堆叠,以提高胸部X光片中结核病的检测率。所获得的结果非常有前景,且优于现有技术。

相似文献

1
A novel stacked generalization of models for improved TB detection in chest radiographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:718-721. doi: 10.1109/EMBC.2018.8512337.
3
Assessment of an ensemble of machine learning models toward abnormality detection in chest radiographs.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3689-3692. doi: 10.1109/EMBC.2019.8856715.
4
Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models.
Front Artif Intell. 2020 Oct 5;3:583427. doi: 10.3389/frai.2020.583427. eCollection 2020.
5
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers.
Front Genet. 2022 Feb 24;13:864724. doi: 10.3389/fgene.2022.864724. eCollection 2022.
8
Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
IEEE Access. 2020;8:27318-27326. doi: 10.1109/access.2020.2971257. Epub 2020 Feb 3.
9
Pulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detection.
Artif Intell Med. 2020 Jul;107:101881. doi: 10.1016/j.artmed.2020.101881. Epub 2020 May 22.
10
Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks.
IEEE Access. 2020 Jan 28;8:22812-22825. doi: 10.1109/ACCESS.2020.2970023. eCollection 2020.

引用本文的文献

6
Review on chest pathogies detection systems using deep learning techniques.
Artif Intell Rev. 2023 Mar 20:1-47. doi: 10.1007/s10462-023-10457-9.
8
A Survey on AI Techniques for Thoracic Diseases Diagnosis Using Medical Images.
Diagnostics (Basel). 2022 Dec 3;12(12):3034. doi: 10.3390/diagnostics12123034.

本文引用的文献

1
Pre-trained convolutional neural networks as feature extractors for tuberculosis detection.
Comput Biol Med. 2017 Oct 1;89:135-143. doi: 10.1016/j.compbiomed.2017.08.001. Epub 2017 Aug 4.
2
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.
4
Two public chest X-ray datasets for computer-aided screening of pulmonary diseases.
Quant Imaging Med Surg. 2014 Dec;4(6):475-7. doi: 10.3978/j.issn.2223-4292.2014.11.20.
5
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
6
Role of Gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation.
PLoS One. 2014 Nov 12;9(11):e112980. doi: 10.1371/journal.pone.0112980. eCollection 2014.
7
Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration.
IEEE Trans Med Imaging. 2014 Feb;33(2):577-90. doi: 10.1109/TMI.2013.2290491. Epub 2013 Nov 13.
9
Chest radiography for tuberculosis screening is back on the agenda.
Int J Tuberc Lung Dis. 2012 Nov;16(11):1421-2. doi: 10.5588/ijtld.12.0774.
10
Effective doses in radiology and diagnostic nuclear medicine: a catalog.
Radiology. 2008 Jul;248(1):254-63. doi: 10.1148/radiol.2481071451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验