Rajaraman S, Candemir S, Xue Z, Alderson P O, Kohli M, Abuya J, Thoma G R, Antani S
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:718-721. doi: 10.1109/EMBC.2018.8512337.
Chest x-ray (CXR) analysis is a common part of the protocol for confirming active pulmonary Tuberculosis (TB). However, many TB endemic regions are severely resource constrained in radiological services impairing timely detection and treatment. Computer-aided diagnosis (CADx) tools can supplement decision-making while simultaneously addressing the gap in expert radiological interpretation during mobile field screening. These tools use hand-engineered and/or convolutional neural networks (CNN) computed image features. CNN, a class of deep learning (DL) models, has gained research prominence in visual recognition. It has been shown that Ensemble learning has an inherent advantage of constructing non-linear decision making functions and improve visual recognition. We create a stacking of classifiers with hand-engineered and CNN features toward improving TB detection in CXRs. The results obtained are highly promising and superior to the state-of-the-art.
胸部X光(CXR)分析是确诊活动性肺结核(TB)方案中的常见部分。然而,许多结核病流行地区的放射服务资源严重受限,这影响了及时检测和治疗。计算机辅助诊断(CADx)工具可以辅助决策,同时弥补移动现场筛查期间专家放射学解读方面的差距。这些工具使用手工设计和/或卷积神经网络(CNN)计算的图像特征。CNN是一类深度学习(DL)模型,在视觉识别方面已成为研究热点。研究表明,集成学习在构建非线性决策函数和提高视觉识别方面具有内在优势。我们创建了一个由手工设计特征和CNN特征组成的分类器堆叠,以提高胸部X光片中结核病的检测率。所获得的结果非常有前景,且优于现有技术。