Suppr超能文献

基于贝叶斯卷积神经网络的不确定性辅助鲁棒肺结核识别

Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks.

作者信息

Ul Abideen Zain, Ghafoor Mubeen, Munir Kamran, Saqib Madeeha, Ullah Ata, Zia Tehseen, Tariq Syed Ali, Ahmed Ghufran, Zahra Asma

机构信息

1Department of Computer ScienceCOMSATS University Islamabad (CUI)Islamabad44000Pakistan.

2FET - Computer Science and Creative TechnologiesUniversity of the West of EnglandBristolBS16 1QYU.K.

出版信息

IEEE Access. 2020 Jan 28;8:22812-22825. doi: 10.1109/ACCESS.2020.2970023. eCollection 2020.

Abstract

Tuberculosis (TB) is an infectious disease that can lead towards death if left untreated. TB detection involves extraction of complex TB manifestation features such as lung cavity, air space consolidation, endobronchial spread, and pleural effusions from chest x-rays (CXRs). Deep learning based approach named convolutional neural network (CNN) has the ability to learn complex features from CXR images. The main problem is that CNN does not consider uncertainty to classify CXRs using softmax layer. It lacks in presenting the true probability of CXRs by differentiating confusing cases during TB detection. This paper presents the solution for TB identification by using Bayesian-based convolutional neural network (B-CNN). It deals with the uncertain cases that have low discernibility among the TB and non-TB manifested CXRs. The proposed TB identification methodology based on B-CNN is evaluated on two TB benchmark datasets, i.e., Montgomery and Shenzhen. For training and testing of proposed scheme we have utilized Google Colab platform which provides NVidia Tesla K80 with 12 GB of VRAM, single core of 2.3 GHz Xeon Processor, 12 GB RAM and 320 GB of disk. B-CNN achieves 96.42% and 86.46% accuracy on both dataset, respectively as compared to the state-of-the-art machine learning and CNN approaches. Moreover, B-CNN validates its results by filtering the CXRs as confusion cases where the variance of B-CNN predicted outputs is more than a certain threshold. Results prove the supremacy of B-CNN for the identification of TB and non-TB sample CXRs as compared to counterparts in terms of accuracy, variance in the predicted probabilities and model uncertainty.

摘要

结核病(TB)是一种传染病,如果不加以治疗可能会导致死亡。结核病检测涉及从胸部X光片(CXR)中提取复杂的结核病表现特征,如肺空洞、气腔实变、支气管内播散和胸腔积液。基于深度学习的卷积神经网络(CNN)方法有能力从CXR图像中学习复杂特征。主要问题是,CNN在使用softmax层对CXR进行分类时没有考虑不确定性。它在结核病检测过程中缺乏通过区分混淆病例来呈现CXR的真实概率。本文提出了一种基于贝叶斯卷积神经网络(B-CNN)的结核病识别解决方案。它处理在结核病和非结核病表现的CXR中辨别力较低的不确定病例。基于B-CNN提出的结核病识别方法在两个结核病基准数据集,即蒙哥马利数据集和深圳数据集上进行了评估。对于所提出方案的训练和测试,我们利用了谷歌Colab平台,该平台提供了具有12GB VRAM的英伟达特斯拉K80、2.3GHz至强处理器单核、12GB RAM和320GB磁盘。与最先进的机器学习和CNN方法相比,B-CNN在两个数据集上的准确率分别达到了96.42%和86.46%。此外,B-CNN通过将CXR作为混淆病例进行过滤来验证其结果,其中B-CNN预测输出的方差超过某个阈值。结果证明,与同类方法相比,B-CNN在识别结核病和非结核病样本CXR方面在准确率、预测概率方差和模型不确定性方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2aa/7176037/2fedd6673692/ulabi1-2970023.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验