Guo Ruihua, Passi Kalpdrum, Jain Chakresh Kumar
Department of Mathematics and Computer Science, Laurentian University, Greater Sudbury, ON, Canada.
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
Front Artif Intell. 2020 Oct 5;3:583427. doi: 10.3389/frai.2020.583427. eCollection 2020.
For decades, tuberculosis (TB), a potentially serious infectious lung disease, continues to be a leading cause of worldwide death. Proven to be conveniently efficient and cost-effective, chest X-ray (CXR) has become the preliminary medical imaging tool for detecting TB. Arguably, the quality of TB diagnosis will improve vastly with automated CXRs for TB detection and the localization of suspected areas, which may manifest TB. The current line of research aims to develop an efficient computer-aided detection system that will support doctors (and radiologists) to become well-informed when making TB diagnosis from patients' CXRs. Here, an integrated process to improve TB diagnostics via convolutional neural networks (CNNs) and localization in CXRs via deep-learning models is proposed. Three key steps in the TB diagnostics process include (a) modifying CNN model structures, (b) model fine-tuning via artificial bee colony algorithm, and (c) the implementation of linear average-based ensemble method. Comparisons of the overall performance are made across all three steps among the experimented deep CNN models on two publicly available CXR datasets, namely, the Shenzhen Hospital CXR dataset and the National Institutes of Health CXR dataset. Validated performance includes detecting CXR abnormalities and differentiating among seven TB-related manifestations (consolidation, effusion, fibrosis, infiltration, mass, nodule, and pleural thickening). Importantly, class activation mapping is employed to inform a visual interpretation of the diagnostic result by localizing the detected lung abnormality manifestation on CXR. Compared to the state-of-the-art, the resulting approach showcases an outstanding performance both in the lung abnormality detection and the specific TB-related manifestation diagnosis vis-à-vis the localization in CXRs.
几十年来,肺结核作为一种潜在的严重肺部传染病,一直是全球死亡的主要原因。胸部X光检查(CXR)被证明既方便高效又具有成本效益,已成为检测肺结核的初步医学成像工具。可以说,使用自动胸部X光检查来检测肺结核并定位疑似区域(可能显示患有肺结核),将极大地提高肺结核诊断的质量。当前的研究方向旨在开发一种高效的计算机辅助检测系统,以支持医生(和放射科医生)在根据患者的胸部X光片进行肺结核诊断时能够充分了解情况。在此,提出了一种通过卷积神经网络(CNN)改进肺结核诊断以及通过深度学习模型在胸部X光片中进行定位的集成过程。肺结核诊断过程中的三个关键步骤包括:(a)修改CNN模型结构;(b)通过人工蜂群算法对模型进行微调;(c)实施基于线性平均的集成方法。在两个公开可用的胸部X光数据集上,即深圳医院胸部X光数据集和美国国立卫生研究院胸部X光数据集,对实验中的深度CNN模型在所有这三个步骤中的整体性能进行了比较。验证的性能包括检测胸部X光片异常以及区分七种与肺结核相关的表现(实变、积液、纤维化、浸润、肿块、结节和胸膜增厚)。重要的是,采用类激活映射通过在胸部X光片上定位检测到的肺部异常表现来对诊断结果进行可视化解释。与现有技术相比,所得到的方法在肺部异常检测以及与肺结核相关的特定表现诊断方面相对于胸部X光片中的定位均展现出卓越的性能。