Yang Mengya, Yang Peng, Elazab Ahmed, Hou Wen, Li Xia, Wang Tianfu, Zou Wenbin, Lei Baiying
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1254-1257. doi: 10.1109/EMBC.2018.8512549.
Alzheimer's disease (AD) is a neurodegenerative disease with an irreversible and progressive process. Close monitoring of AD is essential for making adjustments in the treatment plan. Since clinical scores can indicate the disease status effectively, the prediction of the scores based on the magnetic resonance imaging (MRI data is highly desirable. Different from previous studies at a single time point, we propose to build a model to explore the relationship between MRI data and scores, thereby predicting longitudinal scores at future time points from the corresponding MRI data. The model incorporates three parts, correntropy regularized joint learning-based feature selection, deep polynomial network based feature encoding, and finally, support vector regression. The regression process is carried out for two scenarios. One is to use baseline data for predictions at future time points, and the other is to combine all the previous data for the prediction at the next time point. Meanwhile, the missing scores are filled in the second scenario to address the incompleteness presented in the data. The simulation results demonstrate that the proposed model accurately describes the relationship between MRI data and scores, and thus it can be effective in predicting longitudinal scores.
阿尔茨海默病(AD)是一种具有不可逆且进行性病程的神经退行性疾病。对AD进行密切监测对于调整治疗方案至关重要。由于临床评分能够有效指示疾病状态,基于磁共振成像(MRI)数据对评分进行预测非常有必要。与以往在单个时间点进行的研究不同,我们提出构建一个模型来探索MRI数据与评分之间的关系,从而根据相应的MRI数据预测未来时间点的纵向评分。该模型包含三个部分,基于核熵正则化联合学习的特征选择、基于深度多项式网络的特征编码,最后是支持向量回归。回归过程针对两种情况进行。一种是使用基线数据预测未来时间点的评分,另一种是结合所有先前数据预测下一个时间点的评分。同时,在第二种情况下填补缺失的评分以解决数据中存在的不完整性问题。模拟结果表明,所提出的模型准确描述了MRI数据与评分之间的关系,因此能够有效预测纵向评分。