Shah Syed A, Tinkhauser Gerd, Chen Chiung Chu, Little Simon, Brown Peter
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2320-2324. doi: 10.1109/EMBC.2018.8512741.
Deep Brain Stimulation (DBS) is a widely used therapy to ameliorate symptoms experienced by patients with Parkinson's Disease (PD). Conventional DBS is continuously ON even though PD symptoms fluctuate over time leading to undesirable side-effects and high energy requirements. This study investigates the use of a Iogistic regression-based classifier to identify periods when PD patients have rest tremor exploiting Local Field Potentials (LFPs) recorded with DBS electrodes implanted in the Subthalamic Nucleus in 7 PD patients (8 hemispheres). Analyzing 36.1 minutes of data with a 512 milliseconds non-overlapping window, the classification accuracy was well above chance-level for all patients, with Area Under the Curve (AUC) ranging from 0.67 to 0.93. The features with the most discriminative ability were, in descending order, power in the 31-45 Hz, 5-7 Hz, 21-30 Hz, 46-55 Hz, and 56-95 Hz frequency bands. These results suggest that using a machine learning-based classifier, such as the one proposed in this study, can form the basis for on-demand DBS therapy for PD tremor, with the potential to reduce side-effects and lower battery consumption.
深部脑刺激(DBS)是一种广泛应用于改善帕金森病(PD)患者症状的治疗方法。传统的DBS即使在PD症状随时间波动的情况下也持续开启,这会导致不良副作用和高能量需求。本研究调查了基于逻辑回归的分类器的使用情况,该分类器利用植入7名PD患者(8个半球)丘脑底核的DBS电极记录的局部场电位(LFP)来识别PD患者出现静止性震颤的时期。使用512毫秒的非重叠窗口分析36.1分钟的数据,所有患者的分类准确率均远高于随机水平,曲线下面积(AUC)范围为0.67至0.93。具有最强判别能力的特征按降序排列为31 - 45赫兹、5 - 7赫兹、21 - 30赫兹、46 - 55赫兹和56 - 95赫兹频段的功率。这些结果表明,使用基于机器学习的分类器,如本研究中提出的分类器,可以为PD震颤的按需DBS治疗奠定基础,有可能减少副作用并降低电池消耗。