Suppr超能文献

一款用于癫痫发作检测的41.2纳焦/通道、32通道片上分类器。

A 41.2 nJ/class, 32-Channel On-Chip Classifier for Epileptic Seizure Detection.

作者信息

Taghavi Milad, Haghi Benyamin A, Farivar Masoud, Shoaran Mahsa, Emami Azita

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3693-3696. doi: 10.1109/EMBC.2018.8513243.

Abstract

A 41.2 nJ/class, 32-channel, patient-specific onchip classification architecture for epileptic seizure detection is presented. The proposed system-on-chip (SoC) breaks the strict energy-area-delay trade-off by employing area and memoryefficient techniques. An ensemble of eight gradient-boosted decision trees, each with a fully programmable Feature Extraction Engine (FEE) and FIR filters are continuously processing the input channels. In a closed-loop architecture, the FEE reuses a single filter structure to execute the top-down flow of the decision tree. FIR filter coefficients are multiplexed from a shared memory. The 540 × 1850 μm prototype with a 1kB register-type memory is fabricated in a TSMC 65nm CMOS process. The proposed on-chip classifier is verified on 2253 hours of intracranial EEG (iEEG) data from 20 patients including 361 seizures, and achieves specificity of 88.1% and sensitivity of 83.7%. Compared to the state-of-the-art, the proposed classifier achieves 27 × improvement in Energy-AreaLatency product.

摘要

本文提出了一种用于癫痫发作检测的41.2 nJ/通道、32通道、针对特定患者的片上分类架构。所提出的片上系统(SoC)通过采用节省面积和内存的技术,打破了严格的能量-面积-延迟权衡。由八个梯度提升决策树组成的集成模型,每个决策树都有一个完全可编程的特征提取引擎(FEE),并且FIR滤波器持续处理输入通道。在闭环架构中,FEE重用单个滤波器结构来执行决策树的自上而下流程。FIR滤波器系数从共享内存中复用。采用台积电65nm CMOS工艺制造了具有1kB寄存器型内存的540×1850μm原型。所提出的片上分类器在来自20名患者的2253小时颅内脑电图(iEEG)数据(包括361次癫痫发作)上进行了验证,特异性达到88.1%,灵敏度达到83.7%。与现有技术相比,所提出的分类器在能量-面积-延迟乘积方面提高了27倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验