Suppr超能文献

神经树:一款256通道、每类0.227微焦的通用神经活动分类与闭环神经调节系统芯片。

NeuralTree: A 256-Channel 0.227-μJ/Class Versatile Neural Activity Classification and Closed-Loop Neuromodulation SoC.

作者信息

Shin Uisub, Ding Cong, Zhu Bingzhao, Vyza Yashwanth, Trouillet Alix, Revol Emilie C M, Lacour Stéphanie P, Shoaran Mahsa

机构信息

Institute of Electrical and Micro Engineering, EPFL, 1202 Geneva, Switzerland, and the School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.

Institute of Electrical and Micro Engineering and Center for Neuroprosthetics, EPFL, 1202 Geneva, Switzerland.

出版信息

IEEE J Solid-State Circuits. 2022;57(11):3243-3257. doi: 10.1109/jssc.2022.3204508. Epub 2022 Sep 29.

Abstract

Closed-loop neural interfaces with on-chip machine learning can detect and suppress disease symptoms in neurological disorders or restore lost functions in paralyzed patients. While high-density neural recording can provide rich neural activity information for accurate disease-state detection, existing systems have low channel counts and poor scalability, which could limit their therapeutic efficacy. This work presents a highly scalable and versatile closed-loop neural interface SoC that can overcome these limitations. A 256-channel time-division multiplexed (TDM) front-end with a two-step fast-settling mixed-signal DC servo loop (DSL) is proposed to record high-spatial-resolution neural activity and perform channel-selective brain-state inference. A tree-structured neural network (NeuralTree) classification processor extracts a rich set of neural biomarkers in a patient- and disease-specific manner. Trained with an energy-aware learning algorithm, the NeuralTree classifier detects the symptoms of underlying disorders (e.g., epilepsy and movement disorders) at an optimal energy-accuracy trade-off. A 16-channel high-voltage (HV) compliant neurostimulator closes the therapeutic loop by delivering charge-balanced biphasic current pulses to the brain. The proposed SoC was fabricated in 65nm CMOS and achieved a 0.227μJ/class energy efficiency in a compact area of 0.014mm/channel. The SoC was extensively verified on human electroencephalography (EEG) and intracranial EEG (iEEG) epilepsy datasets, obtaining 95.6%/94% sensitivity and 96.8%/96.9% specificity, respectively. neural recordings using soft μECoG arrays and multi-domain biomarker extraction were further performed on a rat model of epilepsy. In addition, for the first time in literature, on-chip classification of rest-state tremor in Parkinson's disease (PD) from human local field potentials (LFPs) was demonstrated.

摘要

具有片上机器学习功能的闭环神经接口能够检测并抑制神经疾病的症状,或恢复瘫痪患者丧失的功能。虽然高密度神经记录可为准确的疾病状态检测提供丰富的神经活动信息,但现有系统的通道数较少且可扩展性差,这可能会限制其治疗效果。这项工作提出了一种高度可扩展且通用的闭环神经接口系统级芯片(SoC),可克服这些限制。提出了一种具有两步快速稳定混合信号直流伺服环路(DSL)的256通道时分复用(TDM)前端,用于记录高空间分辨率的神经活动并执行通道选择性脑状态推断。一种树状结构神经网络(NeuralTree)分类处理器以患者和疾病特异性方式提取丰富的神经生物标志物集。通过能量感知学习算法进行训练,NeuralTree分类器在最佳能量-准确性权衡下检测潜在疾病(如癫痫和运动障碍)的症状。一个16通道高压(HV)兼容神经刺激器通过向大脑输送电荷平衡的双相电流脉冲来闭合治疗环路。所提出的SoC采用65nm互补金属氧化物半导体(CMOS)工艺制造,在每通道0.014平方毫米的紧凑面积内实现了每分类0.227微焦耳的能量效率。该SoC在人类脑电图(EEG)和颅内脑电图(iEEG)癫痫数据集上进行了广泛验证,分别获得了95.6%/94%的灵敏度和96.8%/96.9%的特异性。还使用软微脑电图(μECoG)阵列对癫痫大鼠模型进行了神经记录和多域生物标志物提取。此外,本文首次展示了从人类局部场电位(LFP)对帕金森病(PD)静息态震颤进行片上分类。

相似文献

7
CLoSES: A platform for closed-loop intracranial stimulation in humans.CLoSES:一个用于人类闭环颅内刺激的平台。
Neuroimage. 2020 Dec;223:117314. doi: 10.1016/j.neuroimage.2020.117314. Epub 2020 Sep 1.
10
ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification.ResOT:用于神经信号分类的资源高效斜树
IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):692-704. doi: 10.1109/TBCAS.2020.3004544. Epub 2020 Jun 24.

引用本文的文献

本文引用的文献

5
ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification.ResOT:用于神经信号分类的资源高效斜树
IEEE Trans Biomed Circuits Syst. 2020 Aug;14(4):692-704. doi: 10.1109/TBCAS.2020.3004544. Epub 2020 Jun 24.
8
Verification of a Rapidly Multiplexed Circuit for Scalable Action Potential Recording.快速多路复用电路用于可扩展动作电位记录的验证。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1655-1663. doi: 10.1109/TBCAS.2019.2958348. Epub 2019 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验