Nohara Yasunobu, Iihara Koji, Nakashima Naoki
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4042-4045. doi: 10.1109/EMBC.2018.8513026.
Estimating individual causal effect is important for decision making in many fields especially for medical interventions. We propose an interpretable and accurate algorithm for estimating causal effects from observational data. The proposed scheme is combining multiple predictors' outputs by an interpretable predictor such as linear predictor and if then rules. We secure interpretability using the interpretable predictor and balancing scores in causal inference studies as meta-features. For securing accuracy, we adapt machine learning algorithms for calculating balancing scores. We analyze the effect of t-PA therapy for stroke patients using real-world data, which has 64,609 records with 362 variables and interpret results. The results show that cross validation AUC of the proposed scheme is little less than original machine learning scheme; however, the proposed scheme provides interpretability that t-PA therapy is effective for severe patients.
估计个体因果效应对于许多领域的决策,尤其是医学干预决策而言至关重要。我们提出了一种可解释且准确的算法,用于从观测数据中估计因果效应。所提出的方案通过诸如线性预测器和if then规则等可解释预测器来组合多个预测器的输出。我们在因果推断研究中使用可解释预测器和平衡分数作为元特征来确保可解释性。为了确保准确性,我们采用机器学习算法来计算平衡分数。我们使用具有64609条记录和362个变量的真实世界数据,分析了t-PA疗法对中风患者的疗效并解释结果。结果表明,所提出方案的交叉验证AUC略低于原始机器学习方案;然而,所提出的方案提供了可解释性,即t-PA疗法对重症患者有效。