通过自动编码器提高肌电模式识别对电极移位的鲁棒性。

Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.

作者信息

Lv Bo, Sheng Xinjun, Zhu Xiangyang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5652-5655. doi: 10.1109/EMBC.2018.8513525.

Abstract

It is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.

摘要

显然,电极移位会导致肌电模式识别分类准确率下降,这在假肢接受腔穿戴和脱下过程中是不可避免的。为了应对这一限制,我们提出了一种名为稀疏自动编码器(SAE)的无监督特征提取方法,以提取高密度(HD)肌电图(EMG)的稳健空间结构和相关性。该算法在9名肢体健全的受试者和1名截肢者身上进行了评估。实验结果表明,SAE在无移位情况下实现了更低的分类误差,并且与时域和自回归特征(TDAR)相比,在电极±1 cm移位时显著降低了对电极移位的敏感性。此外,SAE对垂直于肌纤维的移位方向不敏感。这项研究的有前景的结果为推动基于模式识别的肌电控制系统在实际条件下的应用做出了巨大贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索